• 제목/요약/키워드: piezoelectric polarization

Search Result 121, Processing Time 0.026 seconds

Electrical and Magnetical Characteristics for PZT/Ferrite Ceramics (PZT/Ferrite 합성 세라믹의 특성에 관한 기초연구)

  • 김장용;이상현;이승봉;안형호;현충일;이명세;문병무
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.4
    • /
    • pp.153-158
    • /
    • 2003
  • This thesis deal with ferroelectric and ferromagnetic materials. PZT/Ferrite ceramics were made by the making process using PZT powder and garnet ferrite powder. PZT and ferrite are mixed as much 90%-10%, 50%-50%, and so on. After making samples, we are polishing samples until thickness is 0.1~0.2mm. We measured all kinds of samples in room temperature and applied magnetic field from -4500 to 4500 Oersted and conducted test of magnetical and electrical measurement using VSM and lpC resolution electrometer calibrated with RT66A pulsed tester. From this measurement, we can calculate tunability of these samples using C value obtained from P-E loop. As a result, it was able to measure magnetic characteristic when two matter had each other component ratio, and it was compound. However, it confirmed the possibility that was able to have ferroelectric characteristic with you in PZT 90% and ferrite 10%. Therefore, If this thing comes for PZT 50% and ferrite 50% have ferroelectric characteristic as him in a compound sample ore, can use this in an oscillator, supersonic waves detector in addition to a piezoelectric element. It may contribute to multipurpose of an element and demands such as a miniaturization of equipment, efficiency, reduce of a price which can use a characteristic of two components.

Crystallization and Electrical Properties of $Ba_2TiSi_2O_8$ Glass-Ceramics from $K_2O-BaO-TiO_2-SiO_2$ System

  • Chae, Su-Jin;Lee, Hoi-Kwan;Kang, Won-Ho
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.110-114
    • /
    • 2006
  • Dielectric properties of glass-ceramics with fresnoite(Ba2TiSi208) crystals have been investigated in xK20-(33.3-x)BaO-16.7TiO2-50SiO2 ($0{\leq}x{\leq}20mol%$) glasses. The glassy nature was analyzed by differential thermal analyses and glass-ceramics was variable and control table by the processing parameters like time and temperature. Dielectric constant was measured over a temperature from 125K to 425k at frequencies form 100Hz to 1MHz, and laid in the range 16-10. Piezoelectric constant d33 was measured using a YE2703A d33meter and changed from 5.9 to 4.8pCN-1 with x contents. The spontaneous polarization Ps estimated from the hysteresis at ${\pm}1.2kV$ was ${\sim}0.3\;{\mu}C/cm2$ at room temperature.

  • PDF

Electrical Properties of pressure sensor using a Pb-free $Bi(Na,K)TiO_3-SrTiO_3$ Ceramics (무연 $Bi(Na,K)TiO_3$계 세라믹을 이용한 압력센서의 전기적 특성)

  • Lee, Hyun-Seok;Yoo, Ju-Hyun;Jeong, Yeong-Ho;Hong, Jae-Il;Chung, Kwang-Hyun;Ryu, Sung-Lim
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.387-391
    • /
    • 2004
  • [ $(Bi_{1/2}Na_{1/2})TiO_3$ ](BNT) is considered to be an excellent candidate for the key material of lead-free piezoelectric ceramic due to properties of strong ferroelectricity with a relatively large remanent polarization $Pr=38{\mu}C/cm^2$, and a large coercive field, Ec=73KV/cm. In this study, electrical properties of pressure sensor using a $0.96Bi_{0.5}(Na_{0.84}K_{0.16})_{0.5}TiO_3+0.04SrTiO_3+0.2wt%La_2O_3$ ceramics are investigated. Resonant frequency of pressure sensor was decreased with increasing pressure. However, its anti-resonant frequency was increased with increasing pressure.

  • PDF

Effect of $MnO_2$ Addition on the Electric Properties in Pb($Mg_{1/3}Nb_{2/3}$)$O_3$ Relaxor Ferroelectrics ($MnO_2$ 첨가에 따른 Pb($Mg_{1/3}Nb_{2/3}$)$O_3$계 완화형 강유전체에서의 전기적 물성변화)

  • 박재환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.7
    • /
    • pp.562-566
    • /
    • 2001
  • The effects of MnO$_2$ addition on the properties in Pb(Mg$_{1}$3/Nb$_{2}$3/)O$_3$ relaxor ferroelectrics were studied in the phase transition temperature range from -4$0^{\circ}C$ to 11$0^{\circ}C$. Specimens were made via solid state processing method. Dielectric properties, piezoelctric properties, electric-field-induced strain were examined to clarify the effect of MnO$_2$ addition in 0.9MN-0.1PT. As the amount of MnO$_2$ increases, the maximum dielectric constant and the dielectric loss decreases. Q$_{m}$ increased by increasing the doping contents of Mn. When 0.5wt% MnO$_2$ was doped, Q$_{m}$ increased from 95 to 480. The electric-filed-induced strain and polarization decreases as the amount of MnO$_2$ increases. From the experimental results, it was suggested that Mn behaves as an ferroelectric domain pinning element.ent.

  • PDF

Measurement of a Mirror Surface Topography Using 2-frame Phase-shifting Digital Interferometry

  • Jeon, Seok-Hee;Gil, Sang-Keun
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.245-250
    • /
    • 2009
  • We propose a digital holographic interference analysis method based on a 2-frame phase-shifting technique for measuring an optical mirror surface. The technique using 2-frame phase-shifting digital interferometry is more efficient than multi-frame phase-shifting techniques because the 2-frame method has the advantage of a reduced number of interferograms, and then takes less time to acquire the wanted topography information from interferograms. In this measurement system, 2-frame phase-shifting digital interferograms are acquired by moving the reference flat mirror surface, which is attached to a piezoelectric transducer, with phase step of 0 or $\pi$/2 in the reference beam path. The measurements are recorded on a CCD detector. The optical interferometry is designed on the basis of polarization characteristics of a polarizing beam splitter. Therefore the noise from outside turbulence can be decreased. The proposed 2-frame algorithm uses the relative phase difference of the neighbor pixels. The experiment has been carried out on an optical mirror which flatness is less than $\lambda$/4. The measurement of the optical mirror surface topography using 2-frame phase-shifting interferometry shows that the peak-to-peak value is calculated to be about $0.1779{\mu}m$, the root-mean-square value is about $0.034{\mu}m$. Thus, the proposed method is expected to be used in nondestructive testing of optical components.

Driving Characteristic of Thin-type Ultrasonic Motor (박형 초음파 모터의 구동특성)

  • Jeong, Seong-Su;Jun, Ho-Ik;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.343-343
    • /
    • 2008
  • Newly designed structure of a thin ultrasonic rotary motor was proposed. Thin brass plate was used as a cross shaped vibrator and eight ceramic plates were attached on the upper and bottom sides of the brass plate as in Figure 1. The thin type ultrasonic motor has the structure adherent piezoelectric ceramic on the top and bottom surface of the thin elastic body. The direction of polarization is decided so as to occur the elliptical displacement in regular sequence at touch point A, B, C and D of stator contacted with rotor. By applying two electric fields which have 90 degree phase difference on the ceramics, each contact points make rotational displacements as in figure 2. Finite element analysis program ATILA was used to find the optimal size of the stator. As a result of the simulation, elliptical displacements of the tips were obtained at off-resonance frequencies. The maximum displacements of the contact tips were obtained at the length of 16[mm], width of 6[mm] and thickness of 0.4[mm]. Changes of the resonance frequencies were inversely proportional to the length of ceramic and proportional to the width of ceramic. Elliptical motions of the contact tips. of the stator were consistently obtained at off resonance frequencies. From a prototype motor, speed of 600[rpm] was obtained at 20[Vrms].

  • PDF

Grain Orientation and Electrical Properties of $Sr_2Nb_2O_7$ Ceramics and Thin Films (다결정 및 박막형 $Sr_2Nb_2O_7$의 입자배향과 전기적특성)

  • 손창헌;전상재;남효덕;이희영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.4
    • /
    • pp.274-280
    • /
    • 1998
  • Polycrystalline $Sr_2Nb_2O_7$ ceramics with very high Curie temperature were sintered using the powder derived by the chemical coprecipitation method (CCP). The phase evolution and grain-orientation of sintered samples were examined by XRD, while sintering behavior, dielectric properties and polarization were studied by SEM and ferroelectric tester. Extremely high degree of grain-orientation was observed along the (0k0) direction, which resulted in anisotropic dielectric properties of the sintered samples, with the dielectric constant values approaching those for single crystal. Thin film fabrication of $Sr_2Nb_2O_7$ in the pyroniobate family was also attempted on $SiO_2$/Si(100), Pt/$SiO_2$/Si(100), Pt/Ti/$SiO_2$/Si(100) and Pt/$ZrO_2/SiO_2/Si_2(100)$ substrates, using metalorganic decomposition (MOD) process. Neodecanoate precursor solution was prepared by mixing strontium neodecanoate with niobium neodecanoate synthesized from niobium ethoxide. It was found that $Sr_2Nb_2O_7$ single phase appeared in XRD patterns the samples annealed above $950^{\circ}C$. The effect of substrate type on film microstructure and dielectric properties was observed.

  • PDF

Dielectric Property Analysis of BaTiO3 Capacitor Manufactured by Inkjet Printing Process (잉크젯 프린팅 공정을 통해 제작된 BaTiO3 Capacitor의 유전특성 분석)

  • Kim, Yu-Jin;Lee, Gyeong-Yeong;Lee, In-Gon;Hong, Ic-Pyo;Kim, Ji-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.610-615
    • /
    • 2022
  • BaTiO3 is one of the ferroelectric materials with excellent dielectric properties such as high dielectric constant, low dielectric loss, and is widely used for the manufacturing of capacitors, piezoelectric converters, microsensors, and ferroelectric memories. Inkjet printing is a technology which uses digital and contactless methods which significantly improves flexibility associated with material and structural design, reducing manufacturing costs. Therefore, the top and bottom electrodes, BaTiO3 ink, and photocurable resin were all printed by an inkjet to produce a BaTiO3 capacitor. The properties of the printed thin film were analyzed. It was confirmed that the photocurable resin ink was well-infiltrated between the BaTiO3 powder particles printed by inkjet. The dielectric properties of the capacitor such as dielectric constant which varies in accordance with frequency, polarization and tunability that changes with voltage, were measured.

Interface structure and anisotropic strain relaxation of nonpolar a-GaN on r-sapphire

  • Gong, Bo-Hyeon;Jo, Hyeong-Gyun;Song, Geun-Man;Yun, Dae-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.31-31
    • /
    • 2010
  • The growth of the high-quality GaN epilayers is of significant technological importance because of their commercializedoptoelectronic applications as high-brightness light-emitting diodes (LEDs) and laser diodes (LDs) in the visible and ultraviolet spectral range. The GaN-based heterostructural epilayers have the polar c-axis of the hexagonal structure perpendicular to the interfaces of the active layers. The Ga and N atoms in the c-GaN are alternatively stacked along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs, the stress applied along the same axis contributes topiezoelectric polarization, and thus the total polarization is determined as the sum of spontaneous and piezoelectric polarizations. The total polarization in the c-GaN heterolayers, which can generate internal fields and spatial separation of the electron and hole wave functions and consequently a decrease of efficiency and peak shift. One of the possible solutions to eliminate these undesirable effects is to grow GaN-based epilayers in nonpolar orientations. The polarization effects in the GaN are eliminated by growing the films along the nonpolar [$11\bar{2}0$] ($\alpha$-GaN) or [$1\bar{1}00$] (m-GaN) orientation. Although the use of the nonpolar epilayers in wurtzite structure clearly removes the polarization matters, however, it induces another problem related to the formation of a high density of planar defects. The large lattice mismatch between sapphiresubstrates and GaN layers leads to a high density of defects (dislocations and stacking faults). The dominant defects observed in the GaN epilayers with wurtzite structure are one-dimensional (1D) dislocations and two-dimensional (2D) stacking faults. In particular, the 1D threading dislocations in the c-GaN are generated from the film/substrate interface due to their large lattice and thermal coefficient mismatch. However, because the c-GaN epilayers were grown along the normal direction to the basal slip planes, the generation of basal stacking faults (BSFs) is localized on the c-plane and the generated BSFs did not propagate into the surface during the growth. Thus, the primary defects in the c-GaN epilayers are 1D threading dislocations. Occasionally, the particular planar defects such as prismatic stacking faults (PSFs) and inversion domain boundaries are observed. However, since the basal slip planes in the $\alpha$-GaN are parallel to the growth direction unlike c-GaN, the BSFs with lower formation energy can be easily formed along the growth direction, where the BSFs propagate straightly into the surface. Consequently, the lattice mismatch between film and substrate in $\alpha$-GaN epilayers is mainly relaxed through the formation of BSFs. These 2D planar defects are placed along only one direction in the cross-sectional view. Thus, the nonpolar $\alpha$-GaN films have different atomic arrangements along the two orthogonal directions ($[0001]_{GaN}$ and $[\bar{1}100]_{GaN}$ axes) on the $\alpha$-plane, which are expected to induce anisotropic biaxial strain. In this study, the anisotropic strain relaxation behaviors in the nonpolar $\alpha$-GaN epilayers grown on ($1\bar{1}02$) r-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVO) were investigated, and the formation mechanism of the abnormal zigzag shape PSFs was discussed using high-resolution transmission electron microscope (HRTEM).

  • PDF

Hybrid Fabrication of Screen-printed Pb(Zr,Ti)O3 Thick Films Using a Sol-infiltration and Photosensitive Direct-patterning Technique (졸-침투와 감광성 직접-패턴 기술을 이용하여 스크린인쇄된 Pb(Zr,Ti)O3 후막의 하이브리드 제작)

  • Lee, J.-H.;Kim, T.S.;Park, H.-H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.83-89
    • /
    • 2015
  • In this paper, we propose a fabrication technique for enhanced electrical properties of piezoelectric thick films with excellent patterning property using sol-infiltration and a direct-patterning process. To achieve the needs of high-density and direct-patterning at a low sintering temperature (< $850^{\circ}C$), a photosensitive lead zirconate titanate (PZT) solution was infiltrated into a screen-printed thick film. The direct-patterned PZT films were clearly formed on a locally screen-printed thick film, using a photomask and UV light. Because UV light is scattered in the screen-printed thick film of a porous powder-based structure, there are needs to optimize the photosensitive PZT sol infiltration process for obtaining the enhanced properties of PZT thick film. By optimizing the concentration of the photosensitive PZT sol, UV irradiation time, and solvent developing time, the hybrid films prepared with 0.35 M of PZT sol, 4 min of UV irradiation and 15 sec solvent developing time, showed a very dense with a large grain size at a low sintering temperature of $800^{\circ}C$. It also illustrated enhanced electrical properties (remnant polarization, $P_r$, and coercive field, $E_c$). The $P_r$ value was over four times higher than those of the screen-printed films. These films integrated on silicon wafer substrate could give a potential of applications in micro-sensors and -actuators.