• Title/Summary/Keyword: piezoelectric polarization

Search Result 121, Processing Time 0.036 seconds

Structural Design of Piezoelectric Actuator Considering Polarization Direction and Continuous Approximation of Material Distribution (분극방향과 재료분포의 연속적 근사방법을 고려한 압전형 액추에이터의 구조설계)

  • Lim, Young-Seok;Yoo, Jeong-Hoon;Min, Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1102-1109
    • /
    • 2006
  • In this paper, the polarization of piezoelectric materials is considered to improve actuation since the piezoelectric polarization has influences on the performance of the actuator. The topology design of compliant mechanism can be formulated as an optimization problem of material distribution in a fixed design domain and continuous approximation of material distribution (CAMD) method has demonstrated its effectiveness to prevent the numerical instabilities in topology optimization. The optimization problem is formulated to maximize the mean transduction ratio subject to the total volume constraints and solved using a sequential linear programming algorithm. The effect of CAMD and the performance improvement of actuator are confirmed through Moonie actuator and PZT suspension design.

Research on the Efficiency Improvement of the Cymbal-type Piezoelectric Energy Harvester (심벌형 압전 에너지 하베스터 에너지 수율 향상 연구)

  • Na, Yeong-Min;Park, Jong-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.70-76
    • /
    • 2017
  • The pollution problem of fossil energy sources has caused the development of green energy harvesting systems. Piezoelectric energy harvesting technology has been developed under those external environmental factors. A piezoelectric energy harvester can be defined as a device which transforms mechanical vibration or impact energy into electrical energy. Most researches have focused on bender structures. However, these have a limitation on energy efficiency because of the small effective electromechanical coupling factor, around 10%. Therefore, we should look for a new design for energy harvesting. A cymbal energy harvester can be a good candidate for the high-power energy harvester because it uses a high amplification mechanism using endcaps while keeping a higher electromechanical coupling factor. In this research, we focused on energy efficiency improvements of the cymbal energy harvester by changing the polarization direction, because the electromechanical coupling factor of the k33 mode and the k15 mode is larger than that of the k31 mode. Theoretically, we checked the cymbal harvester with radial polarization and it could obtain 6 times larger energy than that with the k31 direction polarization. Furthermore, we verified the theoretical expectation using the finite element method program. Consequently, we could expect a more efficient cymbal harvester with the radial polarization by comparing two polarization directions.

Microstructure and Ferroelectric Properties of Low Temperature Sintering PMN-PNN-PZT Ceramics with Sintering Temperature (저온소결 PMN-PNN-PZT세라믹스의 소결온도에 따른 미세구조 및 강유전특성)

  • Yoo, Ju-Hyun;Lee, Hyun-Seok;Lee, Sang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.12
    • /
    • pp.1118-1122
    • /
    • 2006
  • In this study, in order to develop the low temperature sintering multilayer piezoelectric actuator, PMN-PNN-PZT system ceramics were manufactured and their microstructure, ferroelectric and piezoelectric properties were investigated. By increasing sintering temperature, remanent polarization$(P_r)$ was increased due to the increase of sinterability and grain size. However, coercive $field(E_c)$ showed an opposite tendency to remanent polarization owing to the feasibility of domain wall motion. At the sintering temperature of $900^{\circ}C$, dielectric $constant({\varepsilon}_r)$, electromechanical coupling $factor(k_p)$, piezoelectric $constant(d_{33})$ and mechanical quality $factor(Q_m)$ showed the optimal value of 1095, 0.60, 363 and 1055, respectively, for multilayer piezoelectric actuator application.

A study for piezoelectric properties analysis of the AlN thin film by using PFM (PFM을 이용한 AlN 박막의 압전특성 분석에 관한 연구)

  • Lee, Jong-Taek;Kim, Se-Young;Shin, Hyeon-Chang;Song, Jun-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.224-225
    • /
    • 2009
  • Aluminium nitride thin film was deposited on Au electrode and Si substrate by radio frequency sputtering system. X-ray diffraction (XRD) was utilized to identify the AlN phase, and Atomic Force Microscope (AFM) was used to obtain the images of surface morphology and roughness value of AlN thin film. The result of XRD and AFM measurement showed that the AlN thin film has strong c-axs orientation and smooth surface. In order to investigate piezoelectric response and polarization properties along to the direction of electric field, PFM (Piezoresponse Force Microscope) system was used, and the images of piezoelectric response due to switching of polarization was observed by PFM.

  • PDF

Polarization behavior of polyvinylidene fluoride films with the addition of reduced graphene oxide

  • Lee, Junwoo;Lim, Sangwoo
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.478-485
    • /
    • 2018
  • The effect of reduced graphene oxide (RGO) addition on the dielectric and piezoelectric behavior of the polyvinylidene fluoride (PVDF) films was studied. Dielectric constant increased by four times and piezoelectric coefficient also increased twice by the addition of RGO in the PVDF films. Based on capacitance-voltage and ellipsometry measurements and the Kramers-Kronig transformation, it is concluded that the enhanced dielectric and piezoelectric properties of the PVDF/RGO films resulted from the increased orientational polarization due to a phase transition from nonpolar crystalline ${\alpha}$ phase to polar crystalline ${\beta}$ phase in the PVDF structure.

One-Dimensional Modeling For Nonlinear Behavior of Ferroelectric Materials (강유전체의 비선형 거동에 대한 1차원 모델링)

  • Kim, Sang-Joo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1378-1383
    • /
    • 2003
  • A ferroelectric (called piezoelectric afterwards) wafer has been widely used as a key component of actuators or sensors of a layer type. According to recent researches, the piezoelectric wafer behaves in a nonlinear way under excessive electro-mechanical loadings. In the present paper, one-dimensional constitutive equations for the nonlinear behavior of a piezoelectric wafer are proposed based on the principles of thermodynamics and a simple viscoplasticity theory. The predictions of the developed model are compared with experimental observations.

  • PDF

Coupled effects of electrical polarization-strain gradient on vibration behavior of double-layered flexoelectric nanoplates

  • Barati, Mohammad Reza
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.573-581
    • /
    • 2017
  • A vibrating double-layered nanoscale piezoelectric plate is developed accounting for the flexoelectricity and surface effects. The flexoelectricity is due to the coupling between electrical polarization and strain gradient. Applying Hamilton's principle, the governing equations and related boundary conditions are derived. Assuming suitable approximate functions, the governing equations are numerically solved for simply-supported and clamped boundary conditions. Obtained results indicate that both the flexoelectricity and surface effects possess notable impact on the vibration frequencies of the system. Only flexoelectricity yields a considerable difference between the present model and previous investigations on conventional piezoelectric nanoplates. Generally, a parametric study has been performed to examine the effects of surface elasticity, flexoelectricity, applied electric voltage, interlayer stiffness, geometrical parameters and boundary conditions on vibration frequencies of piezoelectric nanoplates.

Recent Trends in Energy Harvesting Technology Using Composite Materials (복합소재를 이용한 에너지 하베스팅 기술 동향)

  • Jung, Jae Hwan;Lee, Dong-Min;Kim, Young Jun;Kim, Sang-Woo
    • Ceramist
    • /
    • v.22 no.2
    • /
    • pp.110-121
    • /
    • 2019
  • Triboelectric nanogenerators and piezoelectric nanogenerators are a spotlighted energy harvesting method that converts the wasted mechanical energy from the environment into usable electrical energy. In the case of triboelectric nanogenerators, researches have been mainly focused on high permittivity and flexible polymer materials, and in the case of piezoelectric nanogenerators, researches have been focused on ceramic materials exhibiting high polarization characteristics. Recently, many researches have been conducted to improve durability and power in various environments by using composite materials which have flexible properties of polymer, high permittivity, thermal resistance and high polarization properties of ceramics. This article reviews the energy harvesting studies reported about composites materials using ceramics and polymers.

Quest for Comparing Direct-Current (DC) and Alternating-Current (AC) Poling Effects on Ferroelectric and Piezoelectric Materials (강유전체 압전 재료에서의 직류 및 교류 폴링 효과 비교 대조 탐구)

  • Jihun Choi;Hyunseung Kim;Sang-il Yoon;Chang Kyu Jeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.6
    • /
    • pp.563-581
    • /
    • 2024
  • Piezoelectricity refers to the phenomenon where mechanical stress is converted into electrical signals or, conversely, electrical signals are converted into mechanical stress. Ferroelectric materials, characterized by high dielectric permittivity and spontaneous polarization, retain their polarization even after the removal of an electric field. In such materials, poling plays a crucial role in enhancing the piezoelectric effect, with the process of aligning dipoles being known as poling. This review focuses on studies that have compared and analyzed the enhancement of piezoelectric properties in ceramics and polymers through two representative poling methods: AC poling (ACP) and DC poling (DCP). Even within the same category of ceramics or polymers, variations in piezoelectric properties are observed based on the material type, poling method, and poling conditions. Under certain conditions, ACP has been shown to provide superior poling effects compared to DCP. Through this review, we propose that ACP has the potential not only to replace the traditionally used DCP in the poling of piezoelectric materials but also to serve as a more effective method. This could spark increased interest in the study of poling methods for piezoelectric polymers, a field that has received relatively less attention.

Dielectric and Piezoelectric Properties of Microwave Sintered BNT-ST Ceramics (마이크로파 소성법으로 제조한 BNT-ST 세라믹스의 유전 및 압전 특성)

  • Lee, Sang-Hun;Kim, Seong-Hyun;Erkinov, Farrukh;Nguyen, Hoang Thien Khoi;Duong, Trang An;Han, Hyoung-Su;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.37-44
    • /
    • 2020
  • This study investigated the microstructure and piezoelectric properties of lead-free 0.74(Bi1/2Na1/2)TiO3-0.26SrTiO3 (BNST26) piezoelectric ceramics sintered using a microwave furnace. For comparison, specimens were also prepared using a conventional furnace sintering (CFS). Average grain sizes of 2.4 ㎛ and 3.2 ㎛ were obtained in the sample sintered at 1,100℃ for 5 min using microwave sintering (MWS) and at 1,175℃ for 2 h using CFS, respectively. To quantify the changes in the microstructures and electrical properties according to the sintering conditions, the polarization hysteresis, bipolar and unipolar strain curves, and temperature dependence of permittivity were evaluated. As a result, it was determined that the Pmax (maximum polarization), Pr (remanent polarization) and Smax (maximum strain) values tend to increase with the average grain size. Based on these results, it is concluded that the MWS method can produce lead-free ceramics with superior performance in a relatively short time compared to the conventional CFS method.