• Title/Summary/Keyword: piezoelectric element

Search Result 618, Processing Time 0.029 seconds

A Study on the Characteristics of Linear Ultrasonic Motor Using Metal-Ceramics Composite Structure (금속-세라믹 복합구조 선형 초음파 모터의 특성 연구)

  • Lee, Jae-Hyung;Choi, Myeong-Il;Jeong, Dong-Seok;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.80-83
    • /
    • 2002
  • In this study, a single phase driven piezoelectric motor design is presented for linear motion-metal/ ceramics composite structure. Using ANSYS finite element analysis software, mode shape of free motor was obtained to clarify the working principle of this motor. And characteristics of the motor was measured. The motor is composed of a piezoelectric ceramic, a metal ring which has 4 arms, and a guider. The motor with 25.0[mm] diameter was studied by finite element analysis and experimentation too. As a result, the motor was expressed the best speed in resonance frequency. And according as voltage of the motor increase, the speed increased by ratio.

  • PDF

Static analysis of rubber components with piezoelectric patches using nonlinear finite element

  • Manna, M.C.;Sheikh, A.H.;Bhattacharyya, R.
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.23-42
    • /
    • 2009
  • In order to reduce vibration or to control shape of structures made of metal or composites, piezoelectric materials have been extensively used since their discovery in 1880's. A recent trend is also seen to apply piezoelectric materials to flexible structures made of rubber-like materials. In this paper a non-linear finite element model using updated Lagrangian (UL) approach has been developed for static analysis of rubber-elastic material with surface-bonded piezoelectric patches. A compressible stain energy function has been used for modeling the rubber as hyperelastic material. For formulation of the nonlinear finite element model a twenty-node brick element is used. Four degrees of freedom u, v and w and electrical potential ${\varphi}$ per node are considered as the field variables. PVDF (polyvinylidene fluoride) patches are applied as sensors/actuators or sensors and actuators. The present model has been applied to bimorph PVDF cantilever beam to validate the formulation. It is then applied to study the smart rubber components under different boundary and loading conditions. The results predicted by the present formulation are compared with the analytical solutions as well as the available published results. Some results are given as new ones as no published solutions available in the literatures to the best of the authors' knowledge.

Finite Element Analysis of Smart Composite Plates Containing Piezoelectric Actuator (압전 작동기가 포함된 스마트 복합재 평판의 유한 요소 해석)

  • Han, Jae-Hung;Lee, In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.423-427
    • /
    • 1997
  • Recently, distributed piezoelectric actuators have drawn attention due to their potential applicability within smart structures. Because they serve not only as active components but also passive components, it is difficult to estimate their characteristics accurately. In this study a finite element method based on layerwise theory has been formulated to analyze the characteristics of the distributed piezoelectric actuators. The present method has the capability to describe more refined strain distribution and more realistic boundary conditions.

  • PDF

Prediction of Piezoelectric Coefficients of PZT-Polymer Composites by Finite Element Method (유한요소법을 이용한 복합압전체의 압전계수예측)

  • 신병철;윤만순;임종인;강영훈;장현명;박병학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.1
    • /
    • pp.23-26
    • /
    • 1990
  • A model is developed based on the Finite Element Method (FEM) which provides a more accurate prediction of the hydrostatic piezoelectric coefficient of 1-3 or 3-1 PZT-Polymer composites than does the series/parallel model.

  • PDF

A study on the piezoelectric characteristic of 0.02PYW-0.98PZT system piezoelectric ceramics dopped with NiO, $Cr_2O_3$ (NiO 및 $Cr_2O_3$를 첨가한 0.02PYW-0.98PZT계 세라믹의 압전특성에 관한 연구)

  • Kim, Jean-Shop;Kim, Hyun-Chul;Woon, Hyen-Sang;Bae, Seon-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1789-1791
    • /
    • 1999
  • In consideration of piezoelectric characteristic and Temperature stability, 3-element system dopped with NiO, $Cr_2O_3$ well-known as Hardner and Stabilizer whose primary element is PZT was eximanated its structure, piezoelectric characteristics, dopping with Nio, $Cr_2O_3$. We think that piezoelectric Characteristic is developed, remenent polarization and $E_c$ can developed in specimens by dopping with NiO, $Cr_2O_3$ additive. also, electromechanical quality factor largely showed tendency of decrement. According to dopping NiO, $Cr_2O_3$ more.

  • PDF

Numerical Analysis about the Flow Characteristics for Different Figures of Inlet and Outlet in Diffuser/Nozzle based on Piezoelectric Micropump (디퓨져/노즐을 이용한 압전형 마이크로 펌프의 입 . 출구 형상 차이에 따른 유동특성에 관한 수치해석적 연구)

  • Kim, Chang-Nyung;Kim, Chin-Uck
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3104-3109
    • /
    • 2007
  • The present study has been carried out to investigate the pumping characteristics for different figures of inlet and outlet in diffuser/nozzle based on piezoelectric micropump. Piezoelectric micropump system consists of several parts like a pumping chamber, diffuser/nozzle, piezoelectric element and tubes. Parts of the micropump connected with diffuser/nozzle and tubes have been analyzed.. The magnified parts have been classified into two different models based on their resistance. These models have been further classified into six models with each one having three different angles at the magnified parts. Each model has been compared and analyzed using the simulation tool, namely, CFD-ACE depending on their flow rates and characteristics.

  • PDF

Bidirectional Motion of the Metal/Ceramic Composit Structure Linear Ultrasonic Motor (금속/세라믹 복합구조 선형 초음파 모터의 양방향 운동)

  • Lee, Jae-Hyung;Park, Tae-Gone;Kim, Myung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.79-82
    • /
    • 2002
  • In this paper, a single phase driven piezoelectric motor design was presented for linear motion. Two metal/ceramic composite actuators, a piezoelectric ring which was bonded to a metal endcap from one side, were used as the active elements of this motor. The motor was composed of a piezoelectric ceramic, a metal ring which has 4 arms, and a guider. Motors with 30.0[mm] and 35.0[mm] diameter were studied by finite element analysis and experiments. As results, the maximum speed of motor was obtained at resonant frequency. When the applied voltage of the motor increased, the speed was increased. Also, bidirectional motion of the motor was achieved by combining two motors which have different resonant frequency.

  • PDF

Simulation and experimental analysis of active vibration control of smart beams under harmonic excitation

  • Malgaca, L.;Karagulle, H.
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.55-68
    • /
    • 2009
  • In the present study, active control of a smart beam under forced vibration is analyzed. The aluminum smart beam is composed of two piezoelectric patches and strain gauge. One of the piezoelectric patches is used as controlling actuator while the other piezoelectric patch is used as vibration generating shaker. The smart beam is harmonically excited by the piezoelectric shaker at its fundamental frequency. The strain gauge is utilized to sense the vibration level. Active vibration reduction under harmonic excitation is achieved using both strain and displacement feedback control. Control actions, the finite element (FE) modeling and analyses are directly carried out by using ANSYS parametric design language (APDL). Experimental applications are performed with LabVIEW. Dynamic behavior at the tip of the beam is evaluated for the uncontrolled and controlled responses. The simulation and experimental results are compared. Good agreement is observed between simulation and experimental results under harmonic excitation.