• Title/Summary/Keyword: piezoelectric ceramic material

Search Result 356, Processing Time 0.027 seconds

Frequency response characteristics of PZT pressure sensor using three dimensional LTCC substrates (3차원 LTCC 기판을 이용한 PZT 압력센서의 주파수 응답 특성)

  • Hur, Won-Young;Lee, Kyung-Chun;Hwang, Hyun-Suk;Lee, Tae-Yong;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.204-204
    • /
    • 2010
  • A development of device with reduced size and improved sensitivity is highly impotant Pb(Zr,Ti)$O_3$ thin films are widely used both to make actuator and sensor due to their high sensitivity and low cost. In this study, the feasibility of a piezoelectric presssure sensors based on hybrid low-temperaute co-fired ceramic (LTCC) technology were presented. The LTCC diaphragms with thickness of $400\;{\mu}m$ were fabricated by laminating 4 green tapes which consist of alumina and glass particle in an organic binder. PZT thin films were successfully prepared on between top and bottom Au electrode with LTCC substrates using RF magnetron sputtering. In addition, The frequency response characteristics of the sensor under varing pressure has been analysed. by Network Analyser (HP-8722D). A frequency shift range has been obseved from 1.7GHz to 1.8GHz with a good linearity for applied pressure from 0 psi up to 25 psi.

  • PDF

Material Properties Evaluation of 1-3 type Piezo-composite Fabricated with CIM Technology (CIM 기술로 제조한 1-3 형 압전복합체의 물성 평가)

  • Im, J.I.;Shin, S.Y.;Kim, J.H.;Lim, S.J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.196-199
    • /
    • 2012
  • Generally the piezo-composites have superior hydrostatic response characteristics than PZT ceramics due to both the stress amplification effect in axial direction and stress reduction effects in radial direction. This paper described material properties of a 1-3 type piezo-composite that fabricated with ceramic injection molding (CIM) technology. The electro-mechanical performances of the composite have been analyzed using FEM and the physical properties of the composite have been measured with the vol. % of the PZT ceramics. Based on the results, the $k_t$ increased rapidly as the vol. % of the PZT ceramics increased up to 30 vol. % and saturated the constant value in the above region. Also the experimental results have good agreement with the simulation values of the composite. Finally we developed the composites having high piezoelectric properties than the PZT ceramics with the CIM technology.

  • PDF

Temperature Stability of Electro-mechanical Coupling Factors of PZT Ceramics (PZT 세라믹스의 전기기계결합계수 온도 안정성에 관한 연구)

  • Lee, Gae-Myoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.27-32
    • /
    • 2014
  • In this paper, PZT piezoelectric ceramic specimens with 4 compositions (Zr/Ti=50/50, 53/47, 56/44, 58/42) in $Pb(Zr,Ti)O_3$ system were fabricated. We studied effects of poling strength and thermal aging on the temperature characteristics of eletromechanical coupling factor k31 of the specimens, which were poled with the DC electric fields, 1.5, 2.5 and 3.5 kV/mm respectively and thermally aged for an hour at $200^{\circ}C$. The eletromechanical coupling factor k31 of the specimen with the composition Zr/Ti= 53/47, nearest to the morphotropic phase boundary decreased the most greatly, irrelevant to the intensity of poling field, due to 1st thermal aging. And the temperature coefficient of eletromechanical coupling factor k31 was (-) in the tetragonal phase composition and (+) in the rhombohedral phase composition, which is reverse in the temperature coefficient of resonance frequency. It is interesting that eletromechanical coupling factor k31 of PZT ceramics is shown to be able to increase as temperature increase in the interval $-20{\sim}80^{\circ}C$.

Improving Thermal Resisting Property of PZT Ceramics by Thermal Aging (열에이징에 의한 PZT세라믹스의 내열특성 개선)

  • Lee, Gae-Myung;Kim, Byung-Hyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.43-49
    • /
    • 2005
  • Temperature stabilities of resonance frequencies of the substrates are very important in piezoelectric ceramics oscillators and fitters. In this study, it was investigated thermal resisting property of the length-extensional vibration mode of PZT ceramics. The mode can be utilized in fabricating ultra-small 55 kHz IF devices. We fabricated the ceramic specimens with x = 0.51, 0.52, 0.53, 0.54, and 0.55 in the Pb(Zr$\sub$x/Ti$\sub$1-x/)O$_3$ system. And their resonance frequencies were measured before 1st thermal aging, after 1st and 2nd thermal aging. In order to investigate the influence of thermal aging on thermal resisting properties, thermally aged specimens were once mote thermally aged. Before 1st thermal aging, the specimens of the compositions with morphotropic phase, x = 0.53 and rhombohedral phase, x = 0.54 have weak thermal resisting property of resonance frequency, while tetragonal phase, x = 0.51 has robust thermal resisting property of resonance frequency. 1st thermal aging improved thermal resisting property of resonance frequency in all specimens.

Mechanical Characteristics of MLCA Anodic Bonded on Si wafers (실리콘기판위에 양극접합된 MLCA의 기계적 특성)

  • Kim, Jae-Min;Lee, Jong-Choon;Yoon, Suk-Jin;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.160-163
    • /
    • 2003
  • This paper describes on anodic bonding characteristics of MLCA(Multi Layer Ceramic Actuator) to Si-wafer using evaporated Pyrex #7740 glass thin-films for MEMS applications. Pyrex #7740 glass thin-films with same properties were deposited on MLCA under optimum RF magneto conditions(Ar 100 %, input power $1\;/cm^2$). After annealing in $450^{\circ}C$ for 1 hr, the anodic bonding of MLCA to Si-wafer was successfully performed at 600 V, $400^{\circ}C$ in - 760 mmHg. Then, the MLCA/Si bonded interface and fabricated Si diaphragm deflection characteristics were analyzed through the actuation test. It is possible to control with accurate deflection of Si diaphragm according to its geometries and its maximum non-linearity is 0.05-008 %FS. Moreover, any damages or separation of MICA/Si bonded interfaces do not occur during actuation test. Therefore, it is expected that anodic bonding technology of MICA/Si wafers could be usefully applied for the fabrication process of high-performance piezoelectric MEMS devices.

  • PDF

Optimization of 1-3 Piezoelectric Composites Considering Transmitting and Receiving Sensitivity of Underwater Acoustic Transducers (수중 음향 트랜스듀서의 송수신 감도를 고려한 1-3형 압전복합체의 구조 최적화)

  • Lee, Jaeyoung;Pyo, Seonghun;Roh, Yongrae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.790-800
    • /
    • 2013
  • The optimal structure of 1-3 piezocomposites has been determined by controlling polymer properties, ceramic volume fraction, thickness of composite and aspect ratio of the composite to maximize the TVR (transmitting voltage response), RVS (receiving voltage sensitivity) and FBW (fractional bandwidth) of underwater acoustic transducers. Influence of the design variables on the transducer performance was analyzed with equivalent circuits and the finite element method. When the piezocomposite is vibrating in a pure thickness mode, inter-pillar resonant modes are likely to occur between lattice-structured piezoceramic pillars and polymer matrix, which significantly deteriorate the performance of the piezocomposite. In this work, a new method to design the structure of the 1~3 type piezocomposite was proposed to maximize the TVR, RVS and FBW while preventing the occurrence of the inter-pillar modes. Genetic algorithm was used in the optimal design.

Effect of Pressing Force Applied to a Rotor on Revolution Characteristics in the Windmill Type Ultrasonic Motor (풍차형 초음파 전동기의 회전자에 인가된 힘이 회전특성에 미치는 영향)

  • 김영균;김진수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.390-395
    • /
    • 2000
  • The ultrasonic motor have recently begun to be used for certain unique practical utilizations in the fields of industrial medical consumer and automotive applications. Ultrasonic motor stimulated to ultrasonic oscillations by piezoelectrics to drive a rotor via friction contact. The metal and ceramic composite component was used as the stator element to generate ultrasonic vibrations. The ultrasonic motor used here was the windmill type ultrasonic motor operated by single-phase AC source. The windmill type ultrasonic motors has only three components; a stator element of two windmill shape slotted metal endcaps a rotor and a bearing. In this paper a prototype motor with 11.35 mm diameter was fabricated then relationship between the pressing force applied to a rotor and the rotation characteristic of windmill type ultrasonic motor are investigated when stator’s slots was changed from 4, 6, 8 and thickness changed from 0.15, 0.20 mm, respectively. Optimum pressing force applied to a rotor in the six stators was 1.2 mN.

  • PDF

Pyroelectric Properties on the Orientation of SBN Thin Film (SBN 박막의 배향도에 따른 초전특성 변화)

  • Lee, Chae-Jong;Lee, Hee-Young;Kim, Jeong-Joo;Cho, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.366-367
    • /
    • 2006
  • Different orientated SBN thin films were deposited by Ion Beam Sputtering, and electric properties were measured on each orientation. Ferroelectric $Sr_xBa_{1-x}Nb_2O_6$(SBN) has excellent electro-optic, photo-refractive, piezoelectric, pyroelectric properties. SBN thin film has been deposited by various method, of sol-gel, PLD, CVD, sputtering, etc.. To avoid lead pollution of Pb-system perovskite ferroelectric materials. SBN thin films were fabricated for pyroelectric IR sensor. Using the ceramic target of the same composition and Pt(100)/$TiO_2/SiO-2$/Si(100) substrate, crystallization and orientation behavior as well as electric properties of the films were examined. Seed layer and thin films thickness was controlled to observe the effect on preferred orientation. We measured I-V, C-V, P-E hysteresis to characterize electric-properties on each orientations.

  • PDF

Dielectric and piezoelectric characteristics of low temperature sintering PCW-PMN-PZT ceramics with amount of $Nb_2O_5$ addition ($Nb_2O_5$ 첨가에 따른 저온소결 PCW-PMN-PZT 세라믹스의 유전 및 압전 특성)

  • Lee, Sang-Ho;Chung, Kwang-Hyun;Lee, Duck-Chool;Yoo, Ju-Hyun;Jeong, Yeong-Ho;Ryu, Sung-Lim
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.798-801
    • /
    • 2004
  • In this study, in order to develop low temperature sintering ultrasonic vibrator, PCW-PMN-PZT ceramics with the amount of $Nb_2O_5$ addition were manufactured. All of the fabricated sample showed pure pervoskite structure of tetragonal phase. With increasing the amount of $Nb_2O_5$ addition, mechanical quality factor Qm were increased up to 0.2wt%$Nb_2O_5$ addition and then decreased. And also, with increasing the amount of $Nb_2O_5$ addition, grain size, kp, density and dielectric constant were linearly decreased. At the 0.2wt% $Nb_2O_5$ addition composition ceramic, kp of 0.48, Qm of 2186, ${\varepsilon}r$ of 1219 were shown, respectively. Their values were suitable for ultrasonic vibrator application.

  • PDF

Design Analysis/Manufacturing /Performance Evaluation of Curved Unsymmetrical Piezoelectric Composite Actuator LIPCA (곡면형 비대칭 압전복합재료 작동기 LIPCA의 설계해석/제작/성능평가)

  • Gu, Nam-Seo;Sin, Seok-Jun;Park, Hun-Cheol;Yun, Gwang-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1514-1519
    • /
    • 2001
  • This paper is concerned with design, manufacturing and performance test of LIPCA ( Lightweight Piezo- composite Curved Actuator) using a top carbon fiber composite layer with near -zero CTE(coefficient of thermal expansion), a middle PZT ceramic wafer and a bottom glass/epoxy layer with high CTE. The main point of this design is to replace the heavy metal layers of THUNDER by thigh tweight fiber reinforced plastic layers without losing capabilities to generate high force and large displacement. It is possible to save weight up to about 30% if we replace the metallic backing material by the light fiber composite layer. We can also have design flexibility by selecting the fiber direction and the size of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use epoxy resin prepreg system. Glass/epoxy prepregs, a ceramic wafer with electrode surfaces, and a graphite/epoxy prepreg were simply stacked and cured at an elevated temperature (177 $^{circ}C$ after following an autoclave bagging process. It was found that the manufactured composite laminate device had a sufficient curvature after detached from a flat mold. The analysis method of the cure curvature of LIPCA using the classical lamination theory is presented. The predicted curvatures are fairly in agreement with the experimental ones. In order to investigate the merits of LIPCA, a performance test of both LIPCA and THUNDE$^{TM}$ were conducted under the same boundary conditions. From the experimental actuation tests, it was observed that the developed actuator could generate larger actuation displacement than THUNDERT$^{TM}$.