• Title/Summary/Keyword: piezoelectric ceramic material

Search Result 356, Processing Time 0.025 seconds

GROWTH AND CHARACTERIZATIONS OF $La_3Ga_5SiO_{14}$ SINGLE CRYSTALS AND SINTERED BODY FOR THE APPLICATIONS OF FILER AND RESONATOR

  • Jung, Il-Hyoung;Kyung Joo;Shim, Kwang-Bo;Auh, Keun-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.73-77
    • /
    • 1998
  • Langasite(La3Ga5SiO14) is a new piezoelectric material which is similar to quartz, LN(LiNbO3) and LT(LiTaO3) in its acoustic behavior. In this study, pure Langasite and Langasite family groups were synthesized by the solid state reactions in air. For the synthesis process, diffusion species were investigated and sintered body of synthesized powders were studied on dielectric property according to surface microstructures.

  • PDF

Dielectric and Piezoelectric Properties of $Pb(Sb_{1/2}Nb_{1/2})O_3-PbTiO_3-PbZrO_3$ Ceramics ($Pb(Sb_{1/2}Nb_{1/2})O_3-PbTiO_3-PbZrO_3$ 세라믹스에서의 유전 및 압전 특성)

  • Cha, Yoo-Jeong;Kim, Chang-Il;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.310-310
    • /
    • 2008
  • 본 연구에서는 (1-x) Pb(Zr0.515Ti0.485)$O_3$ - x Pb$(Sb_{1/2}Nb_{1/2})O_3$ + 0.5wt% $MnO_2$ 조성에 Pb$(Sb_{1/2}Nb_{1/2})O_3$ (PSN) (x=0.02, 0.04, 0.06, 0.08) 변화에 따른 미세구조 및 압전, 유전특성에 관해 고찰하였다. PSN 치환량이 증가함에 따라 정방정 (tetragonal)구조에서 삼방정(rhombohedral)구조로 상전이가 일어났으며, 결정립의 크기가 작아지는 것을 확인하였다. 전기기계결합계수 (kp) 는 PSN이 4 mol % 치환됨에 따라 증가하였으며, 더 이상 치환 시 감소하였다. PSN 치환에 따른 전기적 특성은, 결정구조, 결정립의 크기 및 2 차상 등의 미세구조와 긴밀한 관계가 있는 것으로 보여진다. 상경계(Morphotropic Phase Boundary) 영역인 0.96 Pb(Zr0.515Ti0.485)$O_3$ - 0.04 Pb$(Sb_{1/2}Nb_{1/2})O_3$ + 0.5wt% $MnO_2$ 조성에서 $\varepsilon{^T}_{33}/\varepsilon_o$ = 1109, $k_p$= 70.8 (%), $d_{33}$= 325 (pC/N)의 우수한 특성을 나타내었다.

  • PDF

Perturbation analysis for robust damage detection with application to multifunctional aircraft structures

  • Hajrya, Rafik;Mechbal, Nazih
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.435-457
    • /
    • 2015
  • The most widely known form of multifunctional aircraft structure is smart structures for structural health monitoring (SHM). The aim is to provide automated systems whose purposes are to identify and to characterize possible damage within structures by using a network of actuators and sensors. Unfortunately, environmental and operational variability render many of the proposed damage detection methods difficult to successfully be applied. In this paper, an original robust damage detection approach using output-only vibration data is proposed. It is based on independent component analysis and matrix perturbation analysis, where an analytical threshold is proposed to get rid of statistical assumptions usually performed in damage detection approach. The effectiveness of the proposed SHM method is demonstrated numerically using finite element simulations and experimentally through a conformal load-bearing antenna structure and composite plates instrumented with piezoelectric ceramic materials.

Fabrication and Characteristics of Small Sized PZT Powders by using a Propyl Alcohol based Sol-Gel Method

  • Choi, Kyu-M.;Lee, Yun-S.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11A
    • /
    • pp.904-908
    • /
    • 2009
  • The PZT(lead, zirconium, titanium) based ceramics which, are reported to be ferroelectric materials have their important applications in the areas of surface acoustic waves (SAW), filters, infrared detectors, actuators, ferroelectric random acess memory, speakers, electronic switches etc. Moreover, these PZT materials possess the large electromechanical coupling factor, large spontaneous polarization, low dielectric loss and low internal stress etc. Hence, keeping in view the unique properties of PZT piezoelectric ceramics we also tried to synthesize indigenously the small sized PZT ceramic powder in the laboratory by using the modified sol-gel approach. In this paper, Propyl alcohol based sol-gel method was used for preparation of PZT piezoelectric ceramic. The powder obtained by this sol-gel process was calcined and sintering to reach a pyrochlore-free crystal phase. The characterization of synthesized material was carried out by the XRD analysis and the surface morphology was determined by high resolution scanning electron microscopy.

A Study on Improving the Characteristics of Lead-free Piezoelectric Ceramic Materials Applicable to IT and BT Converged Products (IT와 BT 융복합 제품에 적용 가능한 무연압전세라믹소재의 특성 개선에 관한 연구)

  • Seongjun Yun;Joonsoo Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.3
    • /
    • pp.86-94
    • /
    • 2024
  • In this study, an attempt was made to approximate the main characteristic values of Bi0.5(Na0.78K0.22)0.5TiO3 (= BNKT) depending on the content of Fe2O3 additives, aiming to approach the values of lead(Pb) piezoelectric ceramic materials (PZT). Specifically, when the piezoelectric coefficient (d33) value of lead(Pb) piezoelectric ceramic material (PZT polycrystalline ceramic powder) is 300[pC/N] or higher, it is applied for hard purposes such as ultrasonic welding machines and cleaning machines, and when it exceeds 330[pC/N], it is applied for soft purposes like piezoelectric sensors. In this study, research and development were conducted for devices with a piezoelectric coefficient (d33) of 300[pC/N] or more for actuators. For this purpose, K+ exceeding 0.02 to 0.12 mol% was added to (Na0.78K0.22)0.5Bi0.5TiO3 to analyze structural changes due to K+ excess, and (Na0.78K0.22)0.5Bi0.5TiO3 + 8mol% K2CO3 Ti4+ was substituted with Fe3+ to manufacture lead-free piezoelectric materials. As a result, ceramics with Fe3+ substitution at x = 0.0075 yielded an average value of d33 = 315[pC/N]. Furthermore, for ceramics with Fe3+ substitution at x = 0.0075, the average values of maximum polarization (Pmax), residual polarization (Prem), and coercive field (Ec) were found to be 39.63 μC/cm2, 30.45 μC/cm2, and 2.50 kV/mm, respectively. The reliable characteristic values obtained from the research results can be applied to linear actuator components (such as the zoom function of mobile cameras, LDM for skin care, etc.) and ultrasonic vibration components.

Dielectric and Piezoelectric Properties of 0.95(Na0.5K0.5)0.04[(Nb0.8Ta0.20)0.994Co0.015]O3-0.05KNbO3 Ceramics as a Function of Calcination Temperature (하소온도 변화에 따른 0.95(Na0.5K0.5)0.04[(Nb0.8Ta0.20)0.994Co0.015]O3-0.05KNbO3 세라믹스의 유전 및 압전 특성)

  • Park, Min-Ho;Lee, Kab-Soo;Yoo, Ju-Hyun;Jeong, Woy-Seung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.104-108
    • /
    • 2013
  • In this paper, the $0.95(Na_{0.5}K_{0.5})_{0.04}[(Nb_{0.8}Ta_{0.20})_{0.994}Co_{0.015}]O_3$(abbreviated as NKNT) + $0.05KNbO_3$ lead-free piezoelectric ceramics were synthesized by the conventional mixed oxide method route with normal sintering. And also, the effects of calcination temperature on the microstructure, dielectric properties, and piezoelectric properties were investigated. A polymorphic phase transition(PPT) between orthorhombic and tetragonal phases was observed in specimens calcined at $810^{\circ}C{\sim}850^{\circ}C$. The ceramics calcined at $830^{\circ}C$ showed excellent piezoelectric properties: $d_{33}$= 179 pC/N, $k_p$= 0.384, $Q_m$= 79.73). These results indicate that the ceramic is a promising candidate material for lead-free piezoelectric ceramics.

Piezoelectric Properties of $Pb(Ni_{1/3}Nb_{2/3})O_{3}-PbZrO_{3}-PbTiO_{3}$ Ceramics doped with$Y_{2}O_{3}$ and Their Application to Multilayer Piezoelectric Actuators ($Y_{2}O_{3}$가 첨가된 $Pb(Ni_{1/3}Nb_{2/3})O_{3}-PbZrO_{3}-PbTiO_{3}$ 세라믹의 압전특성 및 적층형 압전 Actuator에 관한 연구)

  • Choi, Hae-Yun;Kwon, Jeong-Ho;Lee, Dae-Su;Kim, Il-Won;Song, Jae-Sung;Jeong, Soon-Jong;Lee, Jae-Shin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.317-321
    • /
    • 2002
  • Piezoelectric properties of $(Pb_{1-x}Y_x)[(Ni_{1/3}Nb_{2/3})_{0.15}(Zr_{1/2}Ti_{1/2)})_{0.85}]O_{3}$ (x=0~0.05) ceramics were investigated, The stoichiometric PNN-PZT ceramics required the sintering temperature above $1100^{\circ}C$, but the addition of $Y_{2}O_{3}$ in the PNN-PZT ceramic lowered the sintering temperature down to $1000^{\circ}C$. In case of x=0.005, the electro-mechanical coupling $factor(K_p)$, the piezoelectric $constant(d_{33})$, and the maximum strain ratio of PNN-PZT ceramics sintered at $1000^{\circ}C$ were 53.1%, 395pC/N, and $2200{\times}10^{-6}$ respectively, A 30-layer piezoelectric actuator$(10{\times}10{\times}1.7mm)$ fabricated with the above material showed the maximum strain of $2.09{\mu}m$ under 100V DC bias.

  • PDF

Piezoelectric and Dielectric Characteristics of Lead-free (Na,K)NbO3 Piezoelectric Ceramic System according to Calcination Temperature (하소온도변화에 따른 (Na,K)NbO3계 무연 압전세라믹스의 압전 및 유전특성)

  • Ryu, Sung-Lim;Chung, Kwang-Hyun;Yoo, Ju-Hyun;Lee, Byung-Youl;Jeong, Yeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.821-826
    • /
    • 2005
  • In this paper, in order to develop lead-free piezoelectric ceramics, $(Li_{0.04}Na_{0.44}K_{0.52)(Nb_{0.86}Ta_{0.10}Sb_{0.04})O_3$ ceramics were fabricated with the variation of calcination temperature and sintering temperature. The ceramics couldn't be sintered at temperature less than $1110^{\circ}C$ and showed the highest density at calcination temperature of $800^{\circ}C$. Crystal structure of the ceramics showed pseudo-tetragonal phase. At the calcination temperature of $800^{\circ}C$ and sintering temperature of $1110^{\circ}C$, the optimal values of $density=4.64g/cm^3,\;kp=0.45,\;{\varepsilon}r=1336,\;d_{33}=254pC/N\;and\;Tc=335^{\circ}C$ were obtained.

Effect of ZnO on Low Temperature Sintering of PMN-PNN-PZT Ceramics (ZnO가 PMN-PNN-PZT 세라믹스의 저온소결에 미치는 영향)

  • Lee, Sang-Ho;Yoo, Ju-Hyun;Hong, Jae-Il;Ryu, Sung-Lim
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.32-33
    • /
    • 2006
  • In this study, in order to develop multilayer ceramic actuator for ultrasonic nozzle and ultrasonic vibrator, PMN-PNN-PZT ceramics were fabricated using $Li_2CO_3$. $Na_2CO_3$ and ZnO as sintering aids. And then, their piezoelectric and dielectric properties according to the amount of ZnO addition were investigated. The addition of ZnO improved density, dielectric constant, electromechanical coupling factor, mechanical quality factor and piezoelectric d constant of PMN-PNN-PZT ceramics due to the increase of sinterability and accepter doping effect. Electromechanical coupling factor and mechanical quality factor of PMN-PNN-PZT ceramics increased with ZnO amount up to 0.4wt% and then decreased. At the sintering temperature of $900^{\circ}C$ and 0.4wt% ZnO addition, density, dielectric constant, electromechanical coupling factor, mechanical quality factor and piezoelectric d constant showed the optimum value of 7.876g/$cm^2$, 1299, 0.612, 1151 and 369pC/N, respectively.

  • PDF

Piezoelectric Properties of NKN-BZT Ceramics Sintered with CuO and ZnO Additives (CuO와 ZnO 첨가에 따른 NKN-BZT 세라믹스의 압전 특성)

  • Lee, Seung-Hwan;Baek, Sang-Don;Lee, Dong-Hyun;Lee, Sung-Gap;Lee, Young-Hie
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.636-640
    • /
    • 2011
  • The lead-free $0.98(Na_{0.5},K_{0.5})NbO_3-0.02Ba(Zr_{0.52},Ti_{0.48})O_3$-(hereafter NKN-BZT) CuO, ZnO-doped ceramics were prepared using a conventional mixed oxide method. NKN-BZT ceramics doped CuO, ZnO have superior structural and electrical properties than pure NKN-BZT ceramics. For the NKN-BZT-ZnO ceramics sintered at $1,120^{\circ}C$, piezoelectric constant ($d_{33}$) of sample showed the optimum values of 172 pC/N. The $0.98(Na_{0.5},K_{0.5})NbO_3-0.02Ba(Zr_{0.52},Ti_{0.48})O_3$-ZnO ceramics are a promising candidate for lead-free piezoelectric materials.