GROWTH AND CHARACTERIZATIONS OF La₃Ga₅SiO₁₄ SINGLE CRYSTALS AND SINTERED BODY FOR THE APPLICATIONS OF FILTER AND RESONATOR Il Hyoung Jung, Kyung Joo*, Kwang Bo Shim* and Keun Ho Auh* Department of Ceramic Engineering, Hanyang University, Seoul 133-791, Korea *Ceramic Processing Research Center, Department of Ceramic Engineering, Hanyang University, Seoul 133-791, Korea ## **Abstract** Langasite(La₃Ga₅SiO₁₄) is a new piezoelectric material which is similar to quartz, LN(LiNbO₃) and LT(LiTaO₃) in its acoustic behavior. In this study, pure Langasite and Langasite family groups were synthesized by the solid state reactions in air. For the synthesis process, diffusion species were investigated and sintered body of synthesized powders were studied on dielectric property according to surface microstructures. # I. Introduction Rapid progress of electronic technologies required the development of new piezoelectric materials with smaller size, lower impedance and wide passband. For designing a filter devices, Langasite is a new piezoelectric properties intermediate between those of quartz and lithium tantalate. The phase transition of quartz at 573 °C limits the processing temperatures one can use in the fabrication of quartz resonator. While Langasite on the other hand has no phase transition up to its melting temperature 1470 °C. This may allow higher temperature stability through high temperature processing. Langasite is a crystal which has been grown and investigated for laser devices since the 1980s in Russia.⁶ Its promise as a material for SAW, BAW and resonator devices was determined from it's acoustic characteristics.⁷ It was a single oxide compound of the ternary system, and was grown by the Czochralski method. Langasite has a trigonal structure which belongs to point group 32, space group P321, and is isostructural to Ca₃Ga₂Ge₄O₁₄. There are four kind of cation sites in this structure and represent by the A₃BC₃D₂O₁₄. As shown in Fig. 1, A and B was located in a decahedral site and octahedral site, respectively. While C and D on the other hand was located in tetrahedral site. In case of Langasite, La³⁺ occupies the A sites, Ga³⁺ occupies the B, C and half of the D sites, and Si⁴⁺ half of the D sites, respectively.^{4,5} In this present study, we will demonstrate the successful synthesis of Langasite and Langasite family group powders by the solid state reactions in air. And then, characteristics of sintered body which made from synthesized powders will be discussed by dielectric and physical properties. # II. Experimental Procedure The starting materials for the synthesis were used 99.99% oxide of La₂O₃, Ga₂O₃, SiO₂, Ta₂O₅ SrCO₃, Al(OH)₃ and GeO₂. The mixed materials by dry mixing were heated in alumina crucible at temperature range of 1000 ~ 1400 °C in air. And then, synthesized powders were identified using the powder x-ray diffractometer. In order to study diffusion process for synthesizing material such as La₃Ga₅SiO₁₄, La₃Ta_{0.5}Ga_{5.5}O₁₄, La₃Ga₅GeO₁₄ and so on, pellet of La₂O₃, Ga₂O₃ and GeO₂ which was pressed from powders, was stacked together and sintered at various temperatures. The surfaces of sintered plates, which was in contact with each other during sintering, was analyzed by the energy dispersive x-ray spectroscopy(EDS) and wavelength dispersive x-ray spectroscopy(WDS). The synthesized powders were isostatically pressed at 120 MPa into discs 10 mm in diameter and 1 mm in thickness. The microstructure after sintering was observed by scanning electron microscopy (SEM). And then, relative densities were measured by Archimedes method. A physical and dielectric properties of sintered body with disc shape were investigated by the x-ray diffractometer(Rigaku Co.) and impedance analyzer(HP 4192A model). ### III. Results and Discussions For development of new composition according to the crystal chemistry, the composition of La₃Ga₅SiO₁₄, La₃Ta_{0.5}Ga_{5.5}O₁₄, La₃Ga₅GeO₁₄ and Sr₂Al₃LaGe₃O₁₄ etc. were synthesized. As far as piezoelectric coefficient and insertion attenuations are concerned, La₃Ta_{0.5}Ga_{5.5}O₁₄, La₃Ga₅GeO₁₄ will be expected to surpass the quartz and La₃Ga₅SiO₁₄. Also, they have no phase transition up to the melting temperature 1470 \sim 1500 °C. As shown in Fig. 2., Fig. 3. and Fig. 4., XRD results needed to investigated the secondary phases and homogeneous single phase for calcination. In Fig. 2 where La₃Ga₅SiO₁₄ was calcined at 1400 °C for 5h to synthesize powders through the solid state reactions, it was found that La₃Ga₅SiO₁₄ phase began forming at 1100 °C while a secondary phase and unreacted phase, La₂O₃, Ga₂O₃ and LaGaO₃ were mainly detected. These powders dissipating and then the quantity of secondary phase, LaGaO3 was found to decrease with time and temperature. But main peak decreased with increasing temperature and time. It was considered that evaporation of gallium suboxide had an effect on synthesis of La₃Ga₅SiO₁₄ powders. In this experience, we were confirmed that quantity of evaporation of gallium oxide was 13% in it's temperature and time. However, calcination condition for synthesis of pure La₃Ga₅SiO₁₄ single phases with no other secondary phases was found to be at 1400 °C for 5h. As shown in Fig. 3., La₃Ta_{0.5}Ga_{5.5}O₁₄ single phases were synthesized in same conditions. In Fig. 4., while La₃Ga₅GeO₁₄ was synthesized at lower temperature. In case of synthesis such as Langasite and family group, synthesized powders were reacted the alumina crucible because synthesis temperature is around the melting temperature. But La₃Ga₅GeO₁₄ was not reacted the alumina crucible because La₃Ga₅GeO₁₄ phase was synthesized at lower temperature, 1300 °C compare with other Langasite and family group powders. Also, new chemical compound of Sr₂Al₃LaGe₃O₁₄, which was not contained Ga₂O₃, was completely synthesized at 1300 ℃ for In Fig. 5. and Fig. 6., diffusion process for synthesizing material such as La₃Ga₅SiO₁₄, La₃Ta_{0.5}Ga_{5.5}O₁₄, La₃Ga₅GeO₁₄ and so on, pellet of La₂O₃, Ga₂O₃ and GeO₂ which was pressed from powders, was stacked together and sintered at various temperatures. The surfaces of sintered plates, which was in contact with each other during sintering, was analyzed by the energy dispersive x-ray spectroscopy(EDS) and wavelength dispersive x-ray spectroscopy(WDS). As the above results, diffusion reaction occurs on the interface of Ga₂O₃ and GeO₂ while it was not observed on that of La₂O₃ and Ga₂O₃. So, Ga and Ge ions were main diffusion species and thus when La₃Ga₅GeO₁₄ is synthesized, Ga₂O₃ and GeO₂ is thought to react with one another previous to the full synthesis of La₃Ga₅GeO₁₄. $$3La_2O_3 + 3Ga_2O_3 = 6LaGaO_3$$ ------(1) $2 Ga_2O_3 + GeO_2 = Ga_4GeO_8$ -----(2) $6LaGaO_3 + Ga_4GeO_8 + 2Ga_2O_3 = 2La_3Ga_5GeO_{14}$ --- (3) The reaction is thought to occur in the order of equation (1), (2) and (3). The sintering of Langasite is solid state reaction accompanying thermal energy, the change in density using the Archimedes method from 1300 to 1400 $^{\circ}$ C at 50 $^{\circ}$ C intervals with time fixed for 3h was analyzed. Fig. 7. and Fig. 8. show the relative density of the compact bodies sintered from 1300 to 1400 $^{\circ}$ C for 3h under air condition and surface microstructures. The relative density of the sample (a) sintered at 1300 $^{\circ}$ C was 92.7% and those of other sample (b) and (c) sintered at 1350, 1400 $^{\circ}$ C reached almost theoretical values. Fig. 8(a) and Fig. 8(b) show the surface morphology sintered at 1400 $^{\circ}$ C for 3h and the etched surface by HF: H₂O in 1: 2 volume ratio for 40 min at room temperature. The decrease in porosity and the concurrent densification resulted in a higher relative density. In Fig. 9., dielectric constant of polycrystalline Langasite was measured to be $17 \sim 18$ and La₃Ga₅GeO₁₄ had a $22 \sim 27$ in the range of 1 kHz to 13 MHz. In specially, Sr₂Al₃LaGe₃O₁₄ was measured to be $48 \sim 50$. This value is higher than that of other materials. Also, in these materials, phase transition was not observed up to around the melting temperature. So, these materials can be produced high temperature processing. And also, it will be expected that new composition materials can be used microwave frequencies from the dielectric characteristics. In Fig. 10., surface morphology of Langasite was indicated to [001] direction. So it was confirmed that preferred growth orientation was [001] direction. As shown in Table 1, the lattice constants of La₃Ga₅SiO₁₄, La₃Ta_{0.5}Ga_{5.5}O₁₄ and La₃Ga₅GeO₁₄, Sr₂Al₃LaGe₃O₁₄ were measured to be a = 8.1455, 8.228, 8.2009, 8.192 Å and c = 5.102, 5.124, 5.1142, 4.975 Å, respectively. Crystal structure and lattice anisotropy of Langasite family group were similar to those of Langasite. But, in case of Sr₂Al₃LaGe₃O₁₄, it has higher lattice anisotropy than that of other materials. As far as piezoelectric properties are concerned, Sr₂Al₃LaGe₃O₁₄ will be expected to superior to other materials. # Acknowledgements This study was financially supported by the Korean Science and Engineering Foundation Growth and Characterizations of La₆Ga₅SiO₁₄ Single Crystals and Sintered body for the Applications of Filter and Resonator 76 (KOSEF) Research Funds. ### References ¹M.F.Dubovic, I.A.Andreyev, and Yu.S.Shmaly, "Langasite(La₃Ga₅SiO₁₄) an optical piezoelectric: Growth and Property," *IEEE International Frequency Control Symposium*, 43-47 (1994). ²M.Sato, K. Moroishi and S.Ishigami, "Filter and Resonator using Langasite," *IEEE International Frequency Control Symposium*, 379-383, (1996). ³S.Laffey, M.Hendrickson and John R.Vig, "Polishing and etching Langasite and quartz crystals," *IEEE International Frequency Control Symposium*, 245-50 (1994). ⁴H.J.Eichler, D.Ashkenasi, H.Jian and A.A.Kaminski, "Acentric disordered Nd³⁺: La₃Ga₅SiO₁₄ crystal. A broadband luminescence material with high thermal conductivity to generate picosecond Laser pulses," Physics State Solid, 146, 833-841 (1994). ⁵K.Shimamura, H.Takeda, and T.Fukuda, "Growth and characterization of lanthanum gallium silicate La₃Ga₅SiO₁₄ single crystals for piezoelectric applications," *Journal of the Crystal Growth*, **163** 388-92 (1996). ⁶H.Takeda, K. Shimamura, T.Kohno, and T.Fukuda, "Growth and characterization of La₃Nb_{0.5}Ga_{5.5}O₁₄ single crystals," *Journal of the Crystal Growth*, 5284 (1996). ⁷I.M.Silvestrova, V.V.Bezdelkin, P.A.Senyusenkov and Yu.V.Pisarevski, "Present stage of La₃Ga₅SiO₁₄ - Research," *IEEE International Frequency Control Symposium*, 348-50 (1993). <Figure and Table> Fig. 1. configuration of Langasite structure Fig. 3. La₃Ta_{0.5}Ga_{5.5}O₁₄ phases were synthesized at 1400 $^{\circ}$ C for (a)5h and (b) 10 h, respectively. Fig. 2. Langasite phases were synthesized at 1400 ℃ for(a) 2h and (b) 5h, respectively; (b) pure Langasite phases. Fig.4. La3Ga5GeO14 phases were synthesiz -ed at 1300°C for 5h. Fig.5. The result of WDS analysis for the diffusion process (a), (b) and (c) are detecting elements in the interface of GeO₂ and Ga₂O₃. (d), (e) and (f) are detecting elements in the interface of La₂O₃ and Ga₂O₃. Fig. 6. The result of EDS analysis. Fig.7. Relative density on air sintering temperature. Fig.8. SEM micrographs of sintered body; Sample (a) was sintered at 1400°C for 3 h and sample (b) was etched with HF: H₂O=1:2. Fig. 9. Dielectric constant of polycrystalline Langasite and La3Ga5GeO14 were measured by impedance analyzer(HP4192A) at room temperature; Samples were sintered at 1400°C for 5h and prepared disc shape of (a) 9 mm in diameter and 0.7mm in thickness and (b) 10 mm in diameter and 0.47 mm in thickness. Fig. 10. Growth characteristic of Langasite. Surface morphology was indicated to [001] direction.