• Title/Summary/Keyword: piezoceramic sensor

Search Result 61, Processing Time 0.023 seconds

Shape Estimation for the Control of Composite Smart Sstructure Using Piezoceramics (복합재료 지능구조물의 제어를 위한 압전소자를 이용한 변형형상예측)

  • Ha, Seong-Gyu;Jo, Yeong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1133-1145
    • /
    • 1996
  • A method is proposed to predict the deformed shape of the structure subjected to the unknown external loads using the signal from the piezoceramic sensors. Such a shape estimation is based on the linear relationship between the deformation of structure and the signal from sensor, which is calculated using finite element method. The deformed shape is, then calculated using the linear matrix and the signals from the piezoceramic sensors attached to the structures. For the purpose, a structural analysis program is developed using a multi-layerd finite element of 8 nodes with 3 displacement and one voltage degrees of freedom at each node. The multiple layers with the different material properties can be layered within the element. The incompatible mode with the element is found to be crucial to catch the bending behavior accurately. The accuracy of the program is, then, verified by being compared with the experimental results performed by Crawley. The proposed shape estimation method is also verified for the different loads and sensor size. It is shown that the results of shape estimation method using the linear matrix well predicts the deflections compared with those of finite element method.

Vibration Control of a Composite Plate with Piezoelectric Sensor and Actuator (압전센서와 액츄에이터를 이용한 복합재 평판의 진동제어)

  • 권대규;유기호;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.207-210
    • /
    • 2002
  • This paper is concerned with the experiments on the active vibration control of a plate with piezoceramic sensors and actuators. The natural frequencies of the composite plate featured by a piezo-film sensor and piezo-ceramic actuator are calculated by using the modal analysis method. Modal coordinates are introduced to obtain the state equations of the structural system. Six natural frequencies were considered in the modelling, because robust control theory which has inherent robustness to structured uncertainty is adopted to suppress the transients vibrations of a glass fiber reinforced(GFR) composite beam. A robust controller satisfying the nominal performance and robust performance is designed using robust theory based on the structured singular value. Simulations were carried out with the designed controller and effectiveness of the robust control strategy was verified by results.

  • PDF

Vibration Control of a Composite Plate with Attached FBG Sensor (FBG 센서를 부착한 복합재 평판의 진동 제어)

  • Kim, Do-Hyung;Chang, Young-Hwan;Han, Jae-Hung;Lee, In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.14-17
    • /
    • 2003
  • Vibration control of a composite plate with a surface-bonded fiber Bragg grating (FBG) sensor and piezoceramic actuators has been performed using a neural network based adaptive predictive control algorithm. For the detection of Bragg wavelength changes, two cavity lengths in Fabry-Perot read-out interferometers are used in order to produce two quadrature phase shifted signals. The FBG sensor system and real-time neuro-adaptive control algorithm could be applicable to diverse dynamic systems.

  • PDF

Active Control of Forced Vibrations in Smart Laminated Composite Plates Using Piezoceramics (압전세라믹을 이용한 지능 복합적층판의 강제진동의 능동제어)

  • 강영규;구근회;박현철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.193-199
    • /
    • 2001
  • Active control of forced vibration of the cantilevered laminated composite plates using collocated piezoceramic sensor/actuator is analyzed numerically and verified experimentally for various fiber orientations. Impact on the stiffness and the damping properties is studied by varying stacking sequence of [$\theta$$_{4}$O$_{2}$90$_{2}$]s for the laminated composite plate. For the forced vibration control, the plate is excited by one pair of collocated PZT exciters in resonance and its vibrational response is suppressed by the other collocated PZT sensor/actuator using direct negative velocity feedback. It is shown that the active control of forced vibration is more effective for the smart laminated plate with higher modal damped stiffness(2ζ$\omega$/aup 2/) .

  • PDF

Piezoceramic d15 shear-induced direct torsion actuation mechanism: a new representative experimental benchmark

  • Berik, Pelin;Benjeddou, Ayech;Krommer, Michael
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.483-499
    • /
    • 2013
  • A new piezoceramic $d_{15}$ shear-induced torsion actuation mechanism representative benchmark is proposed and its experimentations and corresponding 3D finite element (FE) simulations are conducted. For this purpose, a long and thin smart sandwich cantilever beam is dimensioned and built so that it can be used later for either validating analytical Saint Venant-type solutions or for analyzing arm or blade-based smart structures and systems applications. The sandwich beam core is formed by two adjacent rows of 8 oppositely axially polarized d15 shear piezoceramic patches, and its faces are dimensionally identical and made of the same glass fiber reinforced polymer composite material. Quasi-static and static experimentations were made using a point laser sensor and a scanning laser vibrometer, while the 3D FE simulations were conducted using the commercial software $ABAQUS^{(R)}$. The measured transverse deflection by both sensors showed strong nonlinear and hysteretic (static only) variation with the actuation voltage, which cannot be caught by the linear 3D FE simulations.

Force Tracking Control of a Smart Flexible Gripper Featuring Piezoceramic Actuators (압전 세라믹 작동기로 구성된 스마트 유연 그리퍼의 힘 추적 제어)

  • Choi, Seung-Bok;Cheong, Chae-Cheon;Lee, Chul-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.174-184
    • /
    • 1997
  • This paper presents a robust force tracking control of a smart flexible gripper featured by a piezoceramic actuator characterizing its durability and quick response time. A mathematical governing equation for the proposed gripper structure is derived by employing Hamilton's principle and a state space control model is subsequently obtained through model analysis. Uncertain system parameters such as frequency variation are included in the control model. A sliding mode control theory which has inherent robustness to the sys- tem uncertainties is adopted to design a force tracking controller for the piezoceramic actuator. Using out- put information from the tip force sensor, a full-order observer is constructed to estimate state variables of the system. Force tracking performances for desired trajectories represented by sinusoidal and step func- tions are evaluated by undertaking both simulation and experimental works. In addition, in order to illustrate practical feasibility of the proposed method, a two-fingered gripper is constructed and its performance is demonstrated by showing a capability of holding an object.

  • PDF

Fabrication and Characterization of an Underwater Acoustic Tonpilz Vector Sensor for the Estimation of Sound Source Direction (음원의 방향 추정을 위한 수중 음향 Tonpilz 벡터 센서의 제작 및 특성 평가)

  • Lim, Youngsub;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.351-359
    • /
    • 2015
  • Typical underwater acoustic transducers detect only the magnitude of an acoustic pressure and they have the limitation of not being able to recognize the direction of the sound signal. Hence, the authors of this paper proposed a new vector sensor structure based on Tonpilz transducers that could detect both the magnitude and the direction of a sound pressure. In the proposed structure, the piezoceramic ring was divided into four segments, and proper combination of the output voltages of the segments in response to the external sound pressure could provide the information on the orientation of the sound source. In this paper, a Tonpilz transducer has been fabricated to have the proposed structure and its characteristics has been measured to confirm the validity of the proposed structure.

Development of Smart Active Layer Sensor (I) : Theory and Concept Study (스마트 능동 레이어 센서 개발 (I): 이론 및 개념 연구)

  • Yoon, Dong-Jin;Lee, Young-Sup;Kwon, Jae-Hwa;Lee, Sang-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.465-475
    • /
    • 2004
  • This paper is the first part of the study on the development of a smart active layer (SAL) sensor, which consists of two parts. In this first part, the theory and concept of the SAL sensor is investigated, which is designed for the detection of elastic waves caused by internal cracks and damages in structures. For the development SAL sensor, (i) the basic theory of elastic waves was studied, (ii) the feasible study of the SAL as an elastic waves detection sensor using the finite element analysis (FEA) with respect to a piezoceramic disc was performed. (iii) the comparison of performances between some piezoceramic sensors and a commercial acoustic emission (AE) sensor was accomplished to ensure the applicability by the experimental means, such as a pencil lead break test. Also, the conceptional study for the SAL sensor, which can be utilized for the effective detection and locating of defects by the arrangement of regularly distributed sensors, was discussed.

Design of a Multimode Piezoelectric Spherical Vector Sensor for a Cardioid Beam Pattern (심장형 빔 패턴을 위한 다중모드 압전 구형 벡터센서 설계)

  • Lim, Youngsub;Lee, Jaeyoung;Joh, Cheeyoung;Seo, Heeseon;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.32-42
    • /
    • 2013
  • Typical underwater piezoelectric spherical sensors are omni-directional, thus can measure the scalar quantity sound-pressure-magnitude only with the limitation not being able to measure the direction of the incoming wave. This paper proposes a method to simultaneously measure both the magnitude and direction of the sound wave with the spherical sensor. The method divides the piezoceramic sphere of the sensor into eight elements, and distinguishes the magnitude and direction of the sound pressure by combining the output voltage of the elements in a particular manner. Further, through the analysis of the sensitivity variation in relation to the structural parameters like radius and thickness of the piezoceramic sphere, we have suggested the way to improve the sensitivity of the vector sensor.

Stability analysis for a dissipative feedback control law

  • Kang, Sung-Kwon
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.869-876
    • /
    • 1995
  • Piezo devices such as piezoceramic patches knwon as collocated rate sensor and actuators are commonly used in control of flexible structure (see, e.g., [1]) and noise reduction. Recently, Ito and Kang ([4]) developed a nonlinear feedback control synthesis for regulating fluid flow using these devices.

  • PDF