• Title/Summary/Keyword: pier bridge

Search Result 489, Processing Time 0.035 seconds

Establishment of a Standard Procedure for Safety Inspections of Bridges Using Drones (드론 활용 교량 안전점검을 위한 표준절차 정립)

  • Lee, Suk Bae;Lee, Kihong;Choi, Hyun Min;Lim, Chi Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.281-290
    • /
    • 2022
  • In Korea, the number of national facilities for which a safety inspection is mandatory is increasing, and a safer safety inspection method is needed. This study aimed to increase the efficiency of the bridge safety inspection by enabling rapid exterior inspection while securing the safety of inspectors by using drones to perform the safety inspections of bridges, which had mainly relied on visual inspections. For the research, the Youngjong Grand Bridge in Incheon was selected as a test bed and was divided into four parts: the warren truss, suspension bridge main cable, main tower, and pier. It was possible to establish a five-step standard procedure for drone safety inspections. The step-by-step contents of the standard procedure obtained as a result of this research are: Step 1, facility information collection and analysis, Step 2, analysis of vulnerable parts and drone flight planning, Step 3, drone photography and data processing, Step 4, condition evaluation by external inspection, Step 5, building of external inspection diagram and database. Therefore, if the safety inspections of civil engineering facilities including bridges are performed according to this standard procedure, it is expected that these inspection can be carried out more systematically and efficiently.

Development of System-level Seismic Fragility Methodology for Probabilistic Seismic Performance Evaluation of Steel Composite Box Girder Bridges (강상자형 합성거더교의 확률론적 내진성능 평가를 위한 시스템-수준 지진취약도 방법의 개발)

  • Sina Kong;Yeeun Kim;Jiho Moon;Jong-Keol Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.173-184
    • /
    • 2023
  • Presently, the general seismic fragility evaluation method for a bridge system composed of member elements with different nonlinear behaviors against strong earthquakes has been to evaluate at the element-level. This study aims to develop a system-level seismic fragility evaluation method that represents a structural system. Because the seismic behavior of bridges is generally divided into transverse and longitudinal directions, this study evaluated the system-level seismic fragility in both directions separately. The element-level seismic fragility evaluation in the longitudinal direction was performed for piers, bridge bearings, pounding, abutments, and unseating. Because pounding, abutment, and unseating do not affect the transverse directional damages, the element-level seismic fragility evaluation was limited to piers and bridge bearings. Seismic analysis using nonlinear models of various structural members was performed using the OpenSEES program. System-level seismic fragility was evaluated assuming that damage between element-levels was serially connected. Pier damage was identified to have a dominant effect on system-level seismic fragility than other element-level damages. In other words, the most vulnerable element-level seismic fragility has the most dominant effect on the system-level seismic fragility.

Influence of Incidence Direction of Seismic Wave on the Probabilistic Seismic Fragility Assessment of Bridges (교량의 확률론적 지진취약도에 대한 지진파의 입사방향성의 영향)

  • Sina Kong;Yeeun Kim;Sinith Kung;Jiho Moon;Jong-Keol Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.151-162
    • /
    • 2024
  • As the incidence direction of ground motion (or seismic wave) changes, the seismic response of the structure will also change according to that direction. In order to analyze the effect of the seismic response of the example bridge according to the direction of incidence of ground motion, the acceleration response spectra (Sa-T1) corresponding to the 1-second period obtained for various angles of incidence were obtained. Using Sa-T1, 40 sets of orthogonal pairs of horizontal component seismic waves corresponding to 5 types of percentiles were generated. Seismic vulnerability analysis of the bridge piers was performed by obtaining the seismic response of an example bridge according to the direction of incidence of ground motion. By analyzing the seismic vulnerability analysis of seismic waves corresponding to five types of percentiles, it was found that the median value of the seismic vulnerability curve differs by about 1.2 to 2.6 times depending on the incident direction of the seismic wave. In other words, depending on the incidence direction of seismic waves, the degree of damage to the bridge structure can vary by about 1.2 to 2.6 times.

Case Study on the Vertical Capacity of the Repaired Large Diameter Rock-Socketed Stool Pipe Pile (보수된 대구경 암반 소켈강관말뚝의 연직지지력에 관한 사례연구)

  • 최용규;김승종;김병희;이광욱;김상일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.185-192
    • /
    • 1999
  • It had found that, as a result of cross-hole tonic logging test, concrete was not filled partially within the bottom 2.0 m of the large diameter (Ø= 2,500mm) rock socketed pile, MP20-P11(socket diameter (Ø= 2,200mm), which was a pile among piles group supporting a pier of Kwangan Grand Bridge. The pile was repaired by the combined cement grout injected through the pipes for the cross-hole sonic logging test and the bore holes for core samples. A month after the cement grouting, repairing was checked by coring and cross-hole sonic logging then 3 times of grouting and 2 times of coring were, in turns, peformed, then repairing was completed successfully. The vertical compressive capacity of the repaired large diameter socketed pile was evaluated by several formulas and software ROCKET, and was more conservative than design load (1,882 ton) of MP20-P11. It is expected that, in the case of the battered socketed piles, it could be more reasonable to analyze the behaviors of a battered pile using 3-D model. A 3-D analysis will be peformed in the future study.

  • PDF

Unsteady Flow Analysis for the Design of Local Scour Protection by HEC-RAS(UNET) Model in the River Reach Affected by Tide (HEC-RAS 모형에 의한 감조하천구간 부정류 해석 및 세굴보호공 설계)

  • Namgung, Don;Cho, Doo-Chan;Yoon, Kwang-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1138-1142
    • /
    • 2005
  • The tidal river is a river affected by tide, which causes the water level to rise and fall two times everyday periodically. The local velocity across the river could be very fast because of the cross-sectional characteristics of the river even though it's not a rainy season. Therefore extreme local scour could take place around hydraulic structures such as piers and caissons due to backward flow velocity. For the construction of pier foundation of Ilsan-bridge In the Han River, the field observations were performed to get the velocity and water level. The numerical analysis was performed by HEC-RAS(UNET). The relationship between measured maximum velocity and calculated mean velocity is achieved, which is used to estimate the velocity and water level as the construction is proceeding. Countermeasures for scour were designed with the results of the hydraulic analysis to avoid potential damage during construction work. According to the results of monitoring, the velocity increase after temporary road embankment was negligible, from which it is considered that the degradation of main channel compensated for the constriction of cross-section by embankment.

  • PDF

Application of LSIV to Hydraulic Model Experiment on River Confluence (LSIV를 이용한 하천 합류부 수리 모형 실험)

  • Koh, Seok-Hyun;Yu, Kwon-Kyu;Yoon, Byung-Man
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.1 s.16
    • /
    • pp.63-68
    • /
    • 2005
  • LSIV (Large Scale Image Velocimetry), a technique of image analysis on velocity measurement, was applied to a hydraulic model experiment of river confluence. The surface velocities measured by using LSIV showed similar results with the mean velocities by using a traditional velocimeter, While a general velocimeter can measure only local point velocity, LSIV can measure whole velocity field with one shot. When it is applied to river confluence or around a bridge pier where local flow is dominant, LSIV may be a powerful tool to measure velocity field.

Pseudo-Dynamic Test for the Bridges Retrofitted with Laminated Rubber Bearings (적층고무받침으로 내진보강된 교량의 유사동적실험)

  • Kwak, Im-Jong;Cho, Chang-Beck;Han, Kyoung-Bong;Kim, Young-Jin;Kwak, Jong-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.43-50
    • /
    • 2005
  • Many highway bridges in Korea need seismic retrofit because only one decade has passed since the seismic design criteria was introduced. For the highway bridges of which bearings are worn and dysfunctional, the validity of seismic retrofit method using laminated rubber bearings was discussed in this study. Real scale RC pier specimens without seismic details were constructed. And then, Pot bearing, Rubber bearing (RB), Lead-rubber bearing (LRB) were applied to these specimens. Through pseudo dynamic test method, dynamic behavior of these RC piers under earthquake was simulated and compared. From the test results, proposed seismic retrofit method was found to be valid.

Evaluating damage scale model of concrete materials using test data

  • Mohammed, Tesfaye A.;Parvin, Azadeh
    • Advances in concrete construction
    • /
    • v.1 no.4
    • /
    • pp.289-304
    • /
    • 2013
  • A reliable concrete constitutive material model is critical for an accurate numerical analysis simulation of reinforced concrete structures under extreme dynamic loadings including impact or blast. However, the formulation of concrete material model is challenging and entails numerous input parameters that must be obtained through experimentation. This paper presents a damage scale analytical model to characterize concrete material for its pre- and post-peak behavior. To formulate the damage scale model, statistical regression and finite element analysis models were developed leveraging twenty existing experimental data sets on concrete compressive strength. Subsequently, the proposed damage scale analytical model was implemented in the finite element analysis simulation of a reinforced concrete pier subjected to vehicle impact loading and the response were compared to available field test data to validate its accuracy. Field test and FEA results were in good agreement. The proposed analytical model was able to reliably predict the concrete behavior including its post-peak softening in the descending branch of the stress-strain curve. The proposed model also resulted in drastic reduction of number of input parameters required for LS-DYNA concrete material models.

A Comparative Evaluation of Bridge Pier Scour Formulas (교각 국소 세굴 예측 공식들의 비교 평가)

  • Yu, Kwon-Kyu;Shim, Bong-Joo;Yoon, Byung-Man
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.378-382
    • /
    • 2007
  • 본 연구는 교각의 국부 세굴심 추정 공식들의 정확성과 적용성을 분석하고, 현장 상황에 적합한 공식을 선정하기 위한 연구이다. 이를 위해 비교적 널리 알려진 26개의 세굴심 추정 공식들을 선정하였다. 이들 선정된 공식들을 미 지질조사국에서 작성한 교각 세굴 데이터베이스(BSDMS)에 수록된 493개 교각 세굴 측정값들 중에 246개의 측정값들에 적용하여 각 공식들의 우열을 검토하였다. 각 공식들을 이용하여 계산한 세굴심과 측정 세굴심을 비교하여 각 자료별 불일치율을 계산하였다. 계산된 불일치율을 통계 처리하여 불일치율의 기하 평균과 기하 표준편차를 구하여, 각 공식의 우수성과 적용성을 검토하였다. 또한, 각 공식들을 구성하는 주요 변수들을 분석하고, 각 변수의 변화에 따라 세굴심 추정치가 어떻게 변화하는가를 분석하였다. 분석 결과, 모든 공식들의 불일치율의 기하 평균이 1보다 상당히 큰 것을 보여주고 있다. 즉, 모든 공식들이 실측치보다 세굴심을 과대 추정한다는 의미이다. 정확성의 면에서 보면 불일치율의 기하 평균이 1에 가깝고 기하 표준편차가 작은 공식들이 우수한 공식들이다. 이런 점에서 CSU (HEC-18) 공식, Chitale 공식과 Larras 공식, Hancu 공식 등이 차례로 우수한 공식으로 들 수 있다. 연구 결과는 또한 기존의 여러 연구에서 좋은 결과를 보인 Froeclich 공식이 세굴심을 대체적으로 과소 추정하는 경향이 있음을 보여 주었다.

  • PDF

Experimental Study on Temporal Effects of Local Scour at Bridge Pier (교각(橋脚) 국부선굴(局部洗掘)의 시간적(時間的) 변화(變化)에 관한 실험연구(實驗硏究))

  • Han, Sang-Yeon;Kim, Chang-Sung;Kang, Joon-Gu;Yeo, Woon-Kwang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1701-1705
    • /
    • 2007
  • 국부세굴은 수공구조물 주변에서의 국부적인 흐름변화가 그 원인이라 할 수 있으며 이러한 변화는 교각 또는 교대의 하상재료를 굴착하여 이동시키는 침식작용의 결과이다. 이러한 교량의 교각 또는 교대, 그리고 교각을 지지하는 구조물에서 발생하는 국부세굴은 교량의 수명과 안정성에 좋지 않은 영향을 미쳐 재산상의 피해를 줄뿐만 아니라 교량 붕괴 사태 등으로 인한 대형 인명사고를 초래하는 원인이 될 수도 있다. 따라서 국부세굴의 경향을 예측하고 분석하는 것은 교량 구조물이나 수중 구조물의 설계에 있어서 매우 중요한 과업이다. 이러한 국부세굴을 예측하고 분석하는데 있어서 국내에서는 일정한 흐름조건에 대한 최종세굴심을 예측하는데 초점이 맞추어져 있다. 하지만 국부세굴은 하상재료에 따라 세굴이 진행되는 속도가 다르며 세굴의 진행은 시간 의존적인데 반해 국내에서의 국부세굴의 예측과 분석은 최종세굴심 산정에 초점이 맞추어져 있다. 이에 본 연구에서는 보다 실질적이고 경제적인 국부세굴 경향을 예측할 수 있도록 다양한 하상재료에 대한 시간에 따른 세굴 변화의 특성을 파악하고 분석하였다. 이를 위해 하상재료에 따라 수리실험을 실시하였고, 이를 통해 하상재료에 따른 세굴심의 시간적 변화 곡선을 구하였다. 이렇게 구한 하상재료에 따른 세굴심의 시간적 변화 곡선을 통해 하상재료별 평형세굴심 산정하였고, 산정한 평형세굴심과 기존 세굴심 산정공식을 이용하여 입자별 세굴심을 산정하여 비교 분석하였다.

  • PDF