• Title/Summary/Keyword: pier bridge

Search Result 489, Processing Time 0.022 seconds

Development of Seismic Damage Evaluation factor of Reinforced Concrete Pier for Fragility Analysis (취약도 해석을 위한 철근콘크리트 교각의 지진손상 평가인자 결정)

  • 고현무;이지호;강중원;조호현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.308-315
    • /
    • 2002
  • Fragility analysis is widely used for the seismic safety evaluation of a structure. In fragility analysis, damage evaluation is a crucial factor. Most of the present fragility analyses use the representative responses such as displacement and absorbed hysteretic energy as a tool of damage evaluation. But damage evaluation method that can represent the local damage of a structure is required in the case of piers of which the local damage can cause the whole failure of bridge system. Therefore this study proposes a damage index, which can represent the distribution and magnitude of local damage by using the Lee and Fenves'plastic-damage model. Using the proposed damage index, fragility curves and damage probability matrix of pier are produced and fragility analysis is performed.

  • PDF

A Study of influence factors on the bridge seismic behavior (교량의 지진거동에 미치는 영향인자에 관한 연구)

  • Choi, Jong-Man;Kook, Seung-Kyu;Kim, Jun-Bum;Jung, Dong-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.372-379
    • /
    • 2005
  • The earthquake resistant design concept allows the nonlinear behavior of structures under the design earthquake. Therefore the response spectrum method provided in most codes introduces the response modification factors to consider the nonlinear behavior in the design process. For bridges, the response modification factors are given according to the ductility as well as the redundancy of piers. In this study, among influence factors on the nonlinear seismic behavior, the randomness of artificial accelerograms simulated with different durations, the pier ductility represented by the inelastic behavior characteristic curve and the regularity represented by pier heights are selected. The influence of such factor on the seismic behavior is investigated by comparing response modification factors calculated with the nonlinear time step analysis.

  • PDF

Design criteria of rock socked pile in South Korea (국내 암반에 근입된 현장타설말뚝의 설계기준 수립)

  • 이풍희;김종흔;전경수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.06a
    • /
    • pp.31-42
    • /
    • 2002
  • The Design criteria are different from one another due to the different engineering properties of rock in the every nation. Most of the test results of the rock-socketed piers were loaded two times of the design load capacities because they would be used in the foundation of the bridge or the building. So we have much difficulties in study of the load capacities of the rock-socketed piers by the test result in Korea. When we design the rock-socket piers, every designer uses the different formula, and makes different results. Recently the demand of the large bridges and the huge buildings has been increased. The adequate design criterion of the rock-socketed pier is urgently needed to design them reasonable. In this paper we analyzed the various design criteria and proposed the adequate design criterion which is based on the test results of the rock-socked piers in Korea.

  • PDF

Effects of the nonlinear behavior of lead-rubber bearings on the seismic response of bridges

  • Olmos, B.A.;Roesset, J.M.
    • Earthquakes and Structures
    • /
    • v.1 no.2
    • /
    • pp.215-230
    • /
    • 2010
  • The main objectives of this work were to investigate the effects of the nonlinear behavior of the isolation pads on the seismic response of bridges with rubber bearings, and to identify when base isolation improved their seismic performance. To achieve these objectives a parametric study was conducted designing a set of bridges for three different soil types and varying the number of spans, span lengths, and pier heights. The seismic responses (accelerations, displacements and pier seismic forces) were evaluated for three different structural models subjected to three earthquakes with different dynamic characteristics. The first represented bridges without base isolation; the second corresponded to the same bridges including now rubber bearings as an isolation system, with linear elastic behavior that shifted the natural period of the bridge by a factor of 2 to 4. In the third model the seismic response of bridges supported on lead-Rubber bearings was studied accounting for the nonlinear behavior of the lead. The results show clearly the importance of the nonlinear behavior on the seismic performance of the bridges.

Response Dominant Frequency Analysis for Scour Safety Evaluation of Railroad Piers (철도 교각의 세굴 안정성 평가를 위한 응답 지배주파수 분석)

  • Jung, Hyun-Seok;Lee, Myungjae;Yoo, Mintaek;Lee, Il-Wha
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.83-95
    • /
    • 2020
  • In order to evaluate the stability of the geo-structure of railway bridge, the response dominant frequency was analyzed based on a series of impact vibration load test results. The specifications of the experiment piers were obtained by referring to the completion design data, and when data was missing, a field study was conducted. The impact vibrations test according to the scouring progress was carried out at one pier scheduled to be abandoned, and it was confirmed that the response dominant frequency can be utilized as an evaluation index for scour. In addition, the response dominant frequency was measured through an impact load test at 46 piers in 5 bridges in operation, and the scour safety of the bridge was evaluated by comparing it with the japanese proposal formula.

A Study on Taehwa River Red Tide Solution through Stream Flow (유수소통을 통한 태화강 적조해결 방안 연구)

  • Cho, Hong-Je;Yoon, Sung-Kyu
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.363-375
    • /
    • 2011
  • Recently, Water quiality of urban river largely have gotten better by virtue of sewer pipe laying and sewage treatment plants construction. or the various contaminants which is flowed in into river have generated underwater ecosystem disturbance and red tide by lack of sewage and waste water disposal facilities. With tidal river, taehwa river of ulsan metropolitan city has large river width and gradual stream bed gradient at the dry and storage period. Moreover, the flow is paralyzed due to the bridge pier protection work, consist of the mat foundation which is about 1.2km from two bridge and the contaminant is accumulated. it is caused by of the red tide generated from the several years or it activates. In this study, When flow area is largest by changing independent footing of bridge pier of two bridges and using RMA2 model, we hydraulically analyzed a variable breadth of velocity and discharge. Consequently, flow rate increased the maximum 103%, discharge was exposed to increase the maximum 61%. Directly this cannot extinguish the red tide but suppresses the red tide occurrence or can reduce. And it is determined to prevent the depositioning of the contaminant and can control fundamentally the red tide occurrence cause.

Seismic Performance of Circular Concrete Bridge Piers Externally Strengthened by Carbon Fiber Reinforced Polymer (탄소섬유강화 플라스틱(CFRP)로 보강된 원형콘크리트 교각의 지진성능 평가)

  • Catuira, Mabel;Park, Jong Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.197-208
    • /
    • 2020
  • This paper evaluated the optimum Carbon Fiber Reinforced Polymer (CFRP) using a circular concrete bridge pier subjected to dynamic loading. A three-dimensional finite element model was simulated using finite element program, ABAQUS. Concrete Damage Plasticity (CDP) option and plastic properties of the materials were incorporated to model the non-linearity of the structure. The analyses parameters were changed in length-to-height ratio and width-to-span ratio where columns were subjected to dynamic loading. Numerical analysis was conducted, and the seismic performance of the structures were evaluated by analyzing the ductility behavior of the structure. Results showed that the use of CFRP enhances the structural performance of column and revealed that the increase in length-to-height ratio plays vital role of improving the performance of the structure than the change in width-to-span ratio.

Flood fragility analysis of bridge piers in consideration of debris impacts (부유물 충돌을 고려한 교각의 홍수 취약도 해석 기법)

  • Kim, Hyunjun;Sim, Sung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.325-331
    • /
    • 2016
  • This research developed a flood fragility curve of bridges considering the debris impacts. Damage and failures of civil infrastructure due to natural disasters can cause casualties as well as social and economic losses. Fragility analysis is an effective tool to help better understand the vulnerability of a structure to possible extreme events, such as earthquakes and floods. In particular, flood-induced failures of bridges are relatively common in Korea, because of the mountainous regions and summer concentrated rainfall. The main failure reasons during floods are reported to be debris impact and scour; however, research regarding debris impacts is considered challenging due to various uncertainties that affect the failure probability. This study introduces a fragility analysis methodology for evaluating the structural vulnerability due to debris impacts during floods. The proposed method describes how the essential components in fragility analysis are considered, including limit-state function, intensity measure of the debris impact, and finite element model. A numerical example of the proposed fragility analysis is presented using a bridge pier system under a debris impact.

Dynamic Responses of Multi-Span Simply Supported Bridges under Bi-Directional Seismic Excitations (2방향 지진하중을 받는 다경간 단순교의 동적거동분석)

  • Lee, Sang-Woo;Kim, Sang-Hyo;Mha, Ho-Seong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.21-32
    • /
    • 2004
  • A Seismic analysis procedure of bi-directional brideg motions is developed by using mechanical bridge model. A three-dimensional mechanical model can consider major phenomena under bi-directional seismic excitations, such as nonlinear pier motion under biaxial bending, pounding and bearing damage due to the rotaion of the superstructure, etc. The analyses utilizing the uni-directional and the bi-directional bridge model for the 3-span simply supported bridge are then performed. The seismic responses in two cases are examined and compared by investigating the relative displacements of each superstructure to both ground and adjacent superstructures and the restoring forces of RC pier. The analysis using either the uni-directional model or bi-directional model is acceptable for estimating the displacement responses of a bridge, but the bi-directional analysis is found to give more conservative results for resisting forces of RC piers. To make general conclusions, therefore, the analysis using the bi-directional bridge model should be performed in evaluating the seismic safety of bridges.

Influence of structural system measures on the dynamic characteristics of a multi-span cable-stayed bridge

  • Geng, Fangfang;Ding, Youliang;Xie, Hongen;Song, Jianyong;Li, Wanheng
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.51-73
    • /
    • 2014
  • A three-dimensional finite element model for the Jiashao Bridge, the longest multi-span cable-stayed bridge in the world, is established using the commercial software package ANSYS. Dynamic characteristics of the bridge are analyzed and the effects of structural system measures including the rigid hinge, auxiliary piers and longitudinal constraints between the girders and side towers on the dynamic properties including modal frequency, mode shape and effective mass are studied by referring to the Jiashao Bridge. The analysis results reveal that: (i) the installation of the rigid hinge significantly reduces the modal frequency of the first symmetric lateral bending mode of bridge deck. Moreover, the rigid hinge significantly changes the mode shape and effective mass of the first symmetric torsional mode of bridge deck; (ii) the layout of the auxiliary piers in the side-spans has a limited effect on changing the modal frequencies, mode shapes and effective masses of global vibration modes; (iii) the employment of the longitudinal constraints significantly increases the modal frequencies of the vertical bending modes and lateral bending modes of bridge deck and have significant effects on changing the mode shapes of vertical bending modes and lateral bending modes of bridge deck. Moreover, the effective mass of the first anti-symmetric vertical bending of bridge deck in the longitudinal direction of the fully floating system is significantly larger than that of the partially constrained system and fully constrained system. The results obtained indicate that the structural system measures of the multi-span cable-stayed bridge have a great effect on the dynamic properties, which deserves special attention for seismic design and wind-resistant design of the multi-span cable-stayed bridge.