Tree algorithms have been widely developed for regression problems. One of the good features of a regression tree is the flexibility of fitting because it can correctly capture the nonlinearity of data well. Especially, data with sudden structural breaks such as the price of oil and exchange rates could be fitted well with a simple mixture of a few piecewise linear regression models. Now that split points are determined by chi-squared statistics related with residuals from fitting piecewise linear models and the split variable is chosen by an objective criterion, we can get a quite reasonable fitting result which goes in line with the visual interpretation of data. The piecewise linear regression by a regression tree can be used as a good fitting method, and can be applied to a dataset with much fluctuation.
식물병(植物病) 진전곡선(進展曲線)을 간편하고 융통성있게 기술하는 절편(切片) 1차(次) 회귀(回歸)모델이 본(本) 연구(硏究)에서 제안(提案)되었다. 이 모델은 병진전상황(病進展狀況)을 그 진전형태(進展形態)에 따라 소수(少數)의 1차(次) 회귀식(回歸式)으로 나누고 지표변수(指標變數)를 사용(使用)하여 다시 한개로 묶어 작성(作成)된다. 포장시험(圃場試驗)에서 얻은 12개(個)의 실제병진전상황(實際病進展狀況)에 대(對)한 절편(切片) 1차(次) 회귀(回歸)모델의 통계적(統計的) 적합도(適合度)는 기존(旣存)의 두모델(Logistic모델과 Gompertz모델)에 비(比)하여 증진(增進)되었으며 이 모델이 가진 단순성(單純性), 융통성 및 모수예측(母數豫測)의 용이성(容易性)이 논의(論議)되였다. 그 결과(結果), 절편(切片) 1차(次) 회귀(回歸)모델은 식물병(植物病) 진전(進展)을 기술(記述)하는 한 통계적(統計的) 모델로써 유용(有用)하게 사용(使用)될 수 있으리라 생각된다.
Communications for Statistical Applications and Methods
/
제26권6호
/
pp.539-556
/
2019
This paper derive a method to solve change point regression problems via a process for obtaining consequential results using properties of a difference-based intercept estimator first introduced by Park and Kim (Communications in Statistics - Theory Methods, 2019) for outlier detection in multiple linear regression models. We describe the statistical properties of the difference-based regression model in a piecewise simple linear regression model and then propose an efficient algorithm for change point detection. We illustrate the merits of our proposed method in the light of comparison with several existing methods under simulation studies and real data analysis. This methodology is quite valuable, "no matter what regression lines" and "no matter what the number of change points".
Pipe welding is used in various ranges such as civil engineering and ship building engineering. Until now, many technicians work for pipe welding manually under harmful, dangerous and difficult conditions. So it is necessary to install automation process. For automation pipe welding, relation between welding parameters & bead shape should be considered. Using this relation, bead shape could be expected from welding parameters. FCAW was used in this study. Instead of pipe workpiece, fillet joint plate is used, which were inclined 0,45,90,135,180 degree. By analyzing between welding parameters (current, welding speed, voltage) and bead shape parameters with non-linear multiple regression, bead shape parameters could be expected. Piecewise Cubic Hermite Interpolation was used to expect smooth curved bead shape with bead shape parameters. From these processes, bead shape could be expected from welding parameters.
Communications for Statistical Applications and Methods
/
제19권2호
/
pp.293-301
/
2012
Quantile regression proposed by Koenker and Bassett (1978) is a statistical technique that estimates conditional quantiles. The advantage of using quantile regression is the robustness in response to large outliers compared to ordinary least squares(OLS) regression. A regression tree approach has been applied to OLS problems to fit flexible models. Loh (2002) proposed the GUIDE algorithm that has a negligible selection bias and relatively low computational cost. Quantile regression can be regarded as an analogue of OLS, therefore it can also be applied to GUIDE regression tree method. Chaudhuri and Loh (2002) proposed a nonparametric quantile regression method that blends key features of piecewise polynomial quantile regression and tree-structured regression based on adaptive recursive partitioning. Lee and Lee (2006) investigated wage determinants in the Korean labor market using the Korean Labor and Income Panel Study(KLIPS). Following Lee and Lee, we fit three kinds of quantile regression tree models to KLIPS data with respect to the quantiles, 0.05, 0.2, 0.5, 0.8, and 0.95. Among the three models, multiple linear piecewise quantile regression model forms the shortest tree structure, while the piecewise constant quantile regression model has a deeper tree structure with more terminal nodes in general. Age, gender, marriage status, and education seem to be the determinants of the wage level throughout the quantiles; in addition, education experience appears as the important determinant of the wage level in the highly paid group.
Reversible image watermarking, a type of digital data hiding, is capable of recovering the original image and extracting the hidden message with precision. A number of reversible algorithms have been proposed to achieve a high embedding capacity and a low distortion. While numerous algorithms for the achievement of a favorable performance regarding a small embedding capacity exist, the main goal of this paper is the achievement of a more favorable performance regarding a larger embedding capacity and a lower distortion. This paper therefore proposes a reversible data hiding algorithm for which a novel piecewise 2D auto-regression (P2AR) predictor that is based on a rhombus-embedding scheme is used. In addition, a minimum description length (MDL) approach is applied to remove the outlier pixels from a training set so that the effect of a multiple linear regression can be maximized. The experiment results demonstrate that the performance of the proposed method is superior to those of previous methods.
일사량은 태양광 발전시스템의 전력 생산량에 가장 큰 영향을 미치는 기상요소이며, 다른 기상요소들과 달리 기상청의 일기예보를 통해 제공받을 수 없다. 따라서 효율적인 태양광 발전시스템 운용을 위해 일사량 예측에 관한 연구는 필수적이다. 본 연구는 기상정보 데이터 기반의 Dynamic Piecewise 일사량 예측 모델을 제안한다. Dynamic Piecewise 일사량 예측 모델은 유사한 태양고도와 유사한 날씨의 데이터 조각들로 나누어 학습하기 위해, 예측하는 시점의 태양고도와 운량을 기준으로 전체 데이터를 동적으로 나눈 후 기계학습 알고리즘인 다중 선형회귀 알고리즘으로 학습하여 일사량을 예측하는데 사용된다. 본 연구의 성능을 검증하기 위해 제안 모델인 Dynamic Piecewise 일사량 예측 모델과 이전 연구에서 제안한 모델, 기존의 상관관계식 기반 일사량 예측 모델에 동일한 기상정보 데이터 셋을 적용하여 비교하였으며, 비교결과 본 연구에서 제안한 모델이 가장 정확한 일사량 예측 성능을 보였다.
PURPOSES : The accuracy of travel time information is a key measure of effectiveness and reliability of advanced traveler information systems. This study aims at investigating drivers' perception on the acceptable level of information accuracy and their corresponding valuations. METHODS : A questionnaire survey was executed for collecting driver perception data to capture the expectation level of travel time information provided and their willingness to pay for the information. A Tobit model was adopted for exploring the relationship among the acceptable level, driver socioeconomic characteristics and travel attributes. Since drivers' willingness to pay for accurate travel time information can be different according to their travel lengths, a piecewise linear regression model was developed to capture the sensitivity of values of travel time information to travel length. RESULTS : The analysis results suggest that trip purpose and travel time are two dominant factors to determine drivers' acceptable level of travel time information. For business and short trips, drivers want more accurate information than for non-business and long trips. Drivers' willingness to pay for travel time information also varies depending on their incomes, trip purposes and travel lengths. The results also show that drivers' valuation of travel time information provided is sensitive to their travel length. For longer trips, drivers are less sensitive to travel time information and then put less value on the information provided. CONCLUSIONS : Censored nonlinear regression models are developed to estimate drivers' acceptable accuracy for travel time information and their valuation using questionnaire survey data. The findings on drivers perception to the required accuracy of travel time information and their corresponding willingness to pay can be used in the design and deployment of advanced traveler information system to improve its effectiveness and usefulness through high compliance.
Almost all accelerated life tests assume that no basic failure mechanism changes within the test stresses. But accelerated life test, considering failure mechanism changes, is needed since failure mechanism changes when accelerating beyond the used stress. This paper studies the analysis when the failure mechanism changes within the test stresses. The piecewise linear regression, which the join point of two lines is estimated, is applied In particular, two accelerated life tests, with and without a change in failure mechanism are examined.
Wireless communication systems, in particular, must operate in a crowded electro-magnetic environmnet where in-band undesired signals are treated as noise by the receiver. These interfering signals are often random but not Gaussian Due to nongaussian noise, the distribution of the observables cannot be specified by a finite set of parameters; instead r-dimensioal sample space (pure noise samples) is equiprobably partitioned into a finite number of disjointed regions using quantiles and a vector quantizer based on training samples. If we assume that the detected symbols are correct, then we can observe the pure noise samples during the training and transmitting mode. The algorithm proposed is based on a piecewise approximation to a regression function based on quantities and conditional partition moments which are estimated by a RMSA (Robbins-Monro Stochastic Approximation) algorithm. In this paper, we develop a diversity combiner with modified detector, called Non-Linear Detector, and the receiver has a differential phase detector in each diversity branch and at the combiner each detector output is proportional to the second power of the envelope of branches. Monte-Carlo simulations were used as means of generating the system performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.