• 제목/요약/키워드: picosecond pulse laser

검색결과 28건 처리시간 0.031초

515nm 피코초 레이저를 이용한 구리 어블레이션 공정의 최대 가공율에 대한 이론적 분석 (Theoretical analysis on the maximum volume ablation rate for copper ablation with a 515nm picosecond laser)

  • 신동식;조용권;손현기;서정
    • 한국레이저가공학회지
    • /
    • 제16권2호
    • /
    • pp.1-6
    • /
    • 2013
  • Picosecond lasers are a very effective tool for micromachining metals, especially when high accuracy, high surface roughness and no heat affected zone are required. However, low productivity has been a limit to broadening the spectrum of their industrial applications. Recently it was reported that in the micromachining of copper with a 1064nm picosecond laser, there exist the optimal pulse energy and repetition rate to achieve the maximum volume ablation rate. In this paper, we used a 515nm picosecond laser, which is more efficient for micromachining copper in terms of laser energy absorption, to obtain its optimal pulse energy and repetition rate. Theoretical analysis based on the experimental data on copper ablation showed that using a 515nm picosecond laser instead of a 1064nm picosecond laser is more favorable in that the calculated threshold fluence is 75% lower and optical penetration depth is 50% deeper.

  • PDF

피코초 레이저의 공정변수에 따른 TSV 드릴링 특성연구 (Parametric Study of Picosecond Laser Hole Drilling for TSV)

  • 신동식;서정;김정오
    • 한국레이저가공학회지
    • /
    • 제13권4호
    • /
    • pp.7-13
    • /
    • 2010
  • Today, the most common process for generating Through Silicon Vias (TSVs) for 3D ICs is Deep Reactive Ion Etching (DRIE), which allows for high aspect ratio blind holes with low surface roughness. However, the DRIE process requires a vacuum environment and the use of expensive masks. The advantage of using lasers for TSV drilling is the higher flexibility they allow during manufacturing, because neither vacuum nor lithography or masks arc required and because lasers can be applied even to metal and to dielectric layers other than silicon. However, conventional nanosecond lasers have the disadvantage of causing heat affection around the target area. By contrast, the use of a picosecond laser enables the precise generation of TSVs with less heat affected zone. In this study, we conducted a comparison of thermalization effects around laser-drilled holes when using a picosecond laser set for a high pulse energy range and a low pulse energy range. Notably, the low pulse energy picosecond laser process reduced the experimentally recast layer, surface debris and melts around the hole better than the high pulse energy process.

  • PDF

피코초 펄스 레이저를 이용한 사파이어 웨이퍼 스크라이빙에 관한 연구 (A Study on Sapphire Wafer Scribing Using Picosecond Pulse laser)

  • 문재원;김도훈
    • 한국레이저가공학회지
    • /
    • 제8권2호
    • /
    • pp.7-12
    • /
    • 2005
  • The material processing of UV nanosecond pulse laser cannot be avoided the material shape change and contamination caused by interaction of base material and laser beam. Nowadays, ultra short pulse laser shorter than nanosecond pulse duration is used to overcome this problem. The advantages of this laser are no heat transfer, no splashing material, no left material to the adjacent material. Because of these characteristics, it is so suitable for micro material processing. The processing of sapphire wafer was done by UV 355nm, green 532nm, IR 1064nm. X-Y motorized stage is installed to investigate the proper laser beam irradiation speed and cycles. Also, laser beam fluence and peak power are calculated.

  • PDF

펨토초급 극초단 펄스레이저에 의해 가열된 실리콘 내의 열전달 특성에 관한 수치해석 (Numerical Analysis on Heat Transfer Characteristics in Silicon Boated by Picosecond-to-Femtosecond Ultra-Short Pulse Laser)

  • 이성혁;이준식;박승호;최영기
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1427-1435
    • /
    • 2002
  • The main aim of the present article is numerically to investigate the micro-scale heat transfer phenomena in a silicon microstructure irradiated by picosecond-to-femtosecond ultra-short laser pulses. Carrier-lattice non-equilibrium phenomena are simulated with a self-consistent numerical model based on Boltzmann transport theory to obtain the spatial and temporal evolutions of the lattice temperature, the carrier number density and its temperature. Especially, an equilibration time, after which carrier and lattice are in equilibrium, is newly introduced to quantify the time duration of non-equilibrium state. Significant increase in carrier temperature is observed for a few picosecond pulse laser, while the lattice temperature rise is relatively small with decreasing laser pulse width. It is also found that the laser fluence significantly affects the N 3 decaying rate of Auger recombination, the carrier temperature exhibits two peaks as a function of time due to Auger heating as well as direct laser heating of the carriers, and finally both laser fluence and pulse width play an important role in controlling the duration time of non-equilibrium between carrier and lattice.

An experimental study on the picosecond laser dressing of bronze-bonded diamond wheels

  • Wang, Yanyi;Chen, Genyu;Hu, Bang;Zhou, Wei
    • Advances in nano research
    • /
    • 제12권6호
    • /
    • pp.583-592
    • /
    • 2022
  • In this paper, a pulsed picosecond laser dressing method for bronze-bonded diamond wheel is studied systematically and comprehensively. The picosecond laser pulse ablation experiment is carried out, and the ablation thresholds of bronze-bonded and diamond abrasive particle are measured respectively. The results indicate that the single-pulse ablation thresholds of bronze-bonded are 0.89J/cm2, 0.24J/cm2 during strong/weak ablation stages. And the multi-pulse ablation thresholds of diamond abrasive particle are 1.69J/cm2, 0.49J/cm2 during strong/weak ablation stages. Obviously, diamond grains have less thermal damage during the process of gentle ablation. The diamond grains of the grinding wheel surface are graphitized during laser dressing. The bronze-bonded is relatively smooth and organizational stability, and the diamond grits have suitable prominent height, which are beneficial to maintain the good grinding performance of dressed bronze-bonded diamond grinding wheels.

피코초 레이저 및 CDE를 이용한 TSV가공기술 (TSV Formation using Pico-second Laser and CDE)

  • 신동식;서정;조용권;이내응
    • 한국레이저가공학회지
    • /
    • 제14권4호
    • /
    • pp.14-20
    • /
    • 2011
  • The advantage of using lasers for through silicon via (TSV) drilling is that they allow higher flexibility during manufacturing because vacuums, lithography, and masks are not required; furthermore, the lasers can be applied to metal and dielectric layers other than silicon. However, conventional nanosecond lasers have disadvantages including that they can cause heat affection around the target area. In contrast, the use of a picosecond laser enables the precise generation of TSVs with a smaller heat affected zone. In this study, a comparison of the thermal and crystallographic defect around laser-drilled holes when using a picosecond laser beam with varing a fluence and repetition rate was conducted. Notably, the higher fluence and repetition rate picosecond laser process increased the experimentally recast layer, surface debris, and dislocation around the hole better than the high fluence and repetition rate. These findings suggest that even the picosecond laser has a heat accumulation effect under high fluence and short pulse interval conditions. To eliminate these defects under the high speed process, the CDE (chemical downstream etching) process was employed and it can prove the possibility to applicate to the TSV industry.

  • PDF

Picosecond Mid-Infrared 3.8 ㎛ MgO:PPLN Optical Parametric Oscillator Laser with High Peak Power

  • Chen, Bing-Yan;Wang, Yu-Heng;Yu, Yong-Ji;Jin, Guang-Yong
    • Current Optics and Photonics
    • /
    • 제5권2호
    • /
    • pp.186-190
    • /
    • 2021
  • In this study, a compact, picosecond, mid-infrared 3.8 ㎛ MgO:PPLN optical parametric oscillator (OPO) laser output with high peak power is realized using a master oscillator power amplifier (MOPA) 1 ㎛ solid-state laser seeded by a picosecond fiber laser as the pump source. The pump source was a 50 MHz and 10 ps fiber seed source. After AOM pulse selection and two-stage solid-state amplification, a 1,064 nm laser output with a repetition frequency of 1-2 MHz, pulse width of 9.5 ps, and a maximum average power of 20 W was achieved. Furthermore, a compact short cavity with a unsynchronized pump is adopted through the design of an OPO cavity structure. When the injection pump power was 15 W and the repetition frequency was 1 MHz, the average output power of idler light was 1.19 W, and the corresponding peak power was 119 kW. The optical conversion efficiency was 7.93%. When the repetition frequency was increased to 2 MHz, the average output power of idler light was 1.63 W, the corresponding peak power was 81.5 kW, and the optical conversion efficiency was 10.87%. At the same time, the output wavelength was measured at 3,806 nm, and the beam quality was MX2 = 3.21 and MY2 = 3.34.

Laser Ablation of Polypropylene Films using Nanosecond, Picosecond, and Femtosecond Laser

  • Sohn, Ik-Bu;Noh, Young-Chul;Kim, Young-Seop;Ko, Do-Kyeong;Lee, Jong-Min;Choi, Young-Jin
    • Journal of the Optical Society of Korea
    • /
    • 제12권1호
    • /
    • pp.38-41
    • /
    • 2008
  • Precise micropatterning of polypropylene film, which is highly transparent in the wavelength range over 250 nm has been demonstrated by 355 nm nano/picosecond laser and 785 nm femtosecond laser. Increments of both the pulse energy and the shot number of pulses lead to cooccurrence of photochemical and thermal effects, demonstrated by the spatial expansion of rim on the surface of PP. The shapes of the laser-ablated polypropylene films were imaged by optical microscope and measured by a 3D optical measurement system. And, the ablation depth and width of polypropylene film ablated by femtosecond laser at various pulse energy and pulse number were characterized. Our results demonstrate that a femtosecond pulsed laser is an efficient tool for fabricating micropatterns of polypropylene films, where the micropatterns are specifically tailored in size, location and number easily controlled by laser processing conditions.

Wavelength-Tunable, Passively Mode-Locked Erbium-Doped Fiber Master-Oscillator Incorporating a Semiconductor Saturable Absorber Mirror

  • Vazquez-Zuniga, Luis A.;Jeong, Yoonchan
    • Journal of the Optical Society of Korea
    • /
    • 제17권2호
    • /
    • pp.117-129
    • /
    • 2013
  • We briefly review the recent progress in passively mode-locked fiber lasers (PMLFLs) based on semiconductor saturable absorber mirrors (SESAMs) and discuss the detailed characterization of a SESAM-based, passively mode-locked erbium-doped fiber (EDF) laser operating in the 1.5-${\mu}m$ spectral range for various configurations. A simple and compact design of the laser cavity enables the PMLFL to generate either femtosecond or wavelength-tunable picosecond pulses with high stability as the intra-cavity filtering method is altered. All the cavities investigated in our experiments present self-starting, continuous-wave mode-locking with no Q-switching instabilities. The excellent stability of the source eventually enables the wavelength-tunable PMLFL to be used as a master oscillator for a power-amplifier source based on a large-core EDF, generating picosecond pulses of >10-kW peak power and >100-nJ pulse energy.