• Title/Summary/Keyword: phytosterol, rice

Search Result 15, Processing Time 0.022 seconds

Fatty Acid Composition, Contents of Tocopherols and Phytosterols, and Oxidative Stability of Mixed Edible Oil of Perilla Seed and Rice Bran Oil (들기름과 미강유 혼합 식용유의 지방산 조성, 토코페롤 및 식물성 스테롤 및 산화안전성 측정)

  • Lee, Mi-Jin;Cho, Mun-Ku;Oh, Suk-Heung;Oh, Chan-Ho;Choi, Dong-Seong;Woo, Ja-Won;Park, Ki-Hong;Jung, Mun Yhung
    • The Korean Journal of Food And Nutrition
    • /
    • v.27 no.1
    • /
    • pp.59-65
    • /
    • 2014
  • The fatty acid composition, selected minor components, and the oxidative stability of the mixed edible oil (perilla seed oil and rice bran oil, 3:7 (v/v)) were analyzed. The fatty acid composition of the mixed oil was 32.1% of oleic acid, 30.6% of linoleic acid, 21.4% of linolenic acid, 13.0% of palmitic acid, and 1.7% of stearic acid. The mixed oil contained ${\alpha}$, ${\gamma}$ and ${\delta}$-tocopherols and tocotrienols showing the highest contents of ${\alpha}$-tocopherol. Total amount of tocopherols contained in the mixed oil was 46.63 mg/100 g oil. The composition and content of phytosterols were determined by a GC equipped with a flame ionization detector. Total quantity of phytosterols in the mixed oil was 712.80 mg/100 g oil. The most predominant phytosterol in the mixed oil was ${\beta}$-sitosterol, followed by campesterol and stigmasterol, in a decreasing order. The oxidative stability of the mixed oil was much higher than that of perilla oil, and similar to that of soybean oil, indicating the high oxidative stability of the mixed oil.

Characterization and Purification of a Microsomal 3-Hydroxy-3-Methylglutaryl-CoA Reductase in Rice Seedling (벼 HMG-CoA 환원효소의 특성연구)

  • Kim, Jai-Hyun;Paik, Young-Ki;Kim, Jong-Bum;Kim, Jong-Guk;Hwang, Young-Soo;Ha, Sun-Hwa
    • Applied Biological Chemistry
    • /
    • v.41 no.1
    • /
    • pp.47-52
    • /
    • 1998
  • 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes the conversion of HMG-CoA to mevalonic acid, the first intermediate of isoprenoid biosynthetic pathway in plants. The enzyme was solubilized with 0.4% Brij (polyoxyethylene ether) W-1 from a microsomal fraction of etiolated rice seedlings (Oryza sativa L.) in which its maximal activity was observed on the fourth day after germination. HMGR was purified to near homogeneity by employing $(NH_4)_2SO_4$ fractionation plus chromatographic procedures including DEAE-Sephadex A-50 and HMG-CoA-hexane-agarose affinity column. The size of the purified enzyme was estimated to be 55 kDa when judged by SDS-PAGE analysis with silver staining method. The apparent $K_m$ and $V_{max}$ values for HMG-CoA were determined to be $180\;{\mu}M$ and 107 pmol/min/mg, and those for NADPH were $810\;{\mu}M$ and 32.1 pmol/min/mg, respectively.

  • PDF

Characterization of Scaled-up Low-Trans Shortening from Rice Bran Oil and High Oleic Sunflower Seed Oil with Batch Type Reactor (회분식반응기를 이용한 미강유, 팜스테아린과 고올레인산 해바라기씨유 유래 대량 제조된 저트랜스 쇼트닝의 특성 연구)

  • Kim, Ji-Young;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.3
    • /
    • pp.338-345
    • /
    • 2009
  • Scaled-up low-trans shortening (LTS) was produced by lipase-catalyzed interesterification. Blend of rice bran oil (RBO), palm stearin (PS) and high oleic sunflower seed oil (HO) with 1:2:0.9 (w/w/w) ratio was interesterified using immobilized lipase from Thermomyces lanuginosus (TLIM) in the batch type reactor at $65^{\circ}C$ for 24 hr, and physicochemical melting properties of LTS were compared with commercial shortening. Solid fat content (SFC) of commercial shortening (used as control) and LTS was similar at 9.56 and 8.77%, respectively, at $35^{\circ}C$. Major fatty acids in LTS were C16:1 (33.7 wt%), C18:1 (45.7 wt%) and C18:2 (13.4 wt%). Trans fatty acid content in the commercial shortening (4.8 wt%) was higher than that of LTS (0.5 wt%). After reverse-phase HPLC analysis, major triacylglycerol (TAG) species in LTS were POO, POP and PLO. Total tocopherol, ${\gamma}$-oryzanol and phytosterol contents in the LTS were 12.37, 0.43 and 251.38 mg/100 g, respectively. Hardness of LTS was similar to that of commercial shortening. Also, x-ray diffraction analysis showed coexistence of ${\beta}'$ and ${\beta}$ form in the LTS.

Enzymatic Synthesis of Functional Oil from Rice Bran Oil and Dietary Effects on Hepatic ACAT Activities of High Cholesterol and High Fat Fed Mice (현미유를 이용한 기능성 유지의 효소적 합성 및 고 콜레스레롤, 고 지방 식이가 생쥐의 간 ACAT활성에 미치는 영향)

  • 김성현;부우펑란;이기택
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.5
    • /
    • pp.803-809
    • /
    • 2004
  • Monoacylglycerol (MG) and diacylglycerol (DG), as the components of enzymatically synthesized functional oil, were produced by glycerolysis of rice bran oil and glycerol using IM60 (immobilized lipase) in a stirredbatch reactor at 6$0^{\circ}C$ for 72 hours. After glycerolysis, the contents of triacylglycerol (TG), DG and MG in the produced functional oil were 41.71%,46.19%, and 11.15%, respectively. The functional oil also contained Phytosterols (2.04$\pm$0.17 mg/g), ${\gamma}$ -oryzanol (1.06$\pm$0.04 mg/g) and $\alpha$ -tocopherol (0.13$\pm$0.04 mg/g). In animal experiment the dietary effects of functional oil on hepatic acyl-CoA:cholesterol acyltransferase (ACAT) activities of the high cholesterol and high fat (HCHF)-fed mice were investigated. In functional oil-fed group, the liver ACAT activity was significantly lowered than in HCHF and corn oil-fed groups (p < 0.05). This results suggested that the synthesized functional oil may have an atheroproteetive effect by inhibiting ACAT activity.

Analysis of the General and Functional Components of Various Soybeans (여러 종류 콩의 일반 및 기능성 성분 분석)

  • Lee, Sol;Lee, Yoon Bok;Kim, Hyang Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.8
    • /
    • pp.1255-1262
    • /
    • 2013
  • The objective of this study was to analyze the general and functional components of various soybeans, used for producing soy sauce, tofu, bean sprouts, and for cooking with rice. The moisture, crude protein, crude fat, and ash content of soybeans were in the ranges of 5.50~6.16%, 38.49~41.08%, 14.89~21.89%, and 4.89~5.86%, respectively. Mineral and functional components varied by sample and showed no relationship with usage type. Somyeong for bean sprouts had the highest level of Ca (406.36 mg/100 g), and Sinpaldal for soy sauce and tofu had the highest level of Mg (247.79 mg/100 g). However, Jinpum No. 2 for soy sauce and tofu had the lowest level of Ca (199.51 mg/100 g), and Seonhuk had the lowest level of Mg (90.03 mg/100 g) among the soybeans tested. The isoflavone content in soybeans was in the range of 97.54~402.00 mg/100 g. Somyeong for bean sprouts had the highest level and Seonheuk for cooking with rice had the lowest level. Total oligosaccharides were in the range of $5,838.52{\sim}9,345.90{\mu}g/100g$. Sucrose content was approximately 50% of total oligosaccharides in all samples. Raffinose content was $516.28{\sim}806.95{\mu}g/100g$, and stachyose content was $2,047.13{\sim}3,454.10{\mu}g/100g$. Phytosterols including bracassisterol, campesterol, stigmasterol, and ${\beta}$-sitosterol ranged from 19.25~35.34 mg/100 g. ${\beta}$-sitosterol represented 50% of total phytosterols in almost all samples, followed by campesterol, stigmasterol and bracassisterol. The phytic acid content in soybeans tested was around 2%, except for Sinpaldal No. 2 and Jinpum No. 2 at 0.86% and 1.65%, respectively. The dietary fiber of soybeans was in the ranges of 24.20%~29.20%.