• Title/Summary/Keyword: phytoplankton succession

Search Result 66, Processing Time 0.023 seconds

Dynamics of Phytoplankton and Zooplankton of a Shallow Eutrophic Lake (lake llgam) (수심이 얕은 부영양 인공호(일감호)의 동 ${\cdot}$ 식물플랑크톤 동태학)

  • Kim, Ho-Sub;Park, Je-Chul;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.286-294
    • /
    • 2003
  • This study was attempted to understand seasonal dynamics of phyto- and zooplankton communities in shallow, eutrophic Lake llgam and to compare them with the PEG (Plankton Ecology Group) model. Seasonal succession pattern of phytoplankton community was similar to PEG model as Chlorophyceae and Baciliphyceae increase during spring and autumn fellowed by increase of Cyanophyceae. However, based on the cell density and biomass, a dominant phytoplankton community differed with PEG model: Cyanophyceae had been a dominant community throughout a year, except for ice-cover period during which Chlorophyceae was a dominant group. In spring, when ice melted and dissolved nutrients in water column increased, the increase of Chlorophyceae occurred: when nutrients (DIN and DIP) rapidly decreased, Cyanophyceae increase occurred. Microcystis, Oscillatoria, Lyngbya, Merismopedia were maior dominant species of Cyanophyceae and their cell density and/or biomass was the highest in October 2000 (12.9${\pm}$5.8${\times}10^5$ cells/ml, 3.5${\pm}$0.9${\times}10^3{\mu}gC/l$). Cyanophyceae biomass showed positive relationship with chlorophyll a ($r^2$ = 0.71,P< 0.001) and TP concentration ($r^2$ = 0.62, P< 0.001). Small-sized rotifers such as Keratella cochlearis, increased between March and May when Chlorophyceae increased. Both high standing crop of copepods and cladocerans, such as Diaphanosoma brachyrum and Bosmina longirostris occurred between June and September accompanied with the increase of Dinophyceae and Bacillariophyceae. There was no evidence that clear-water phase was caused by zooplankton grazing. The diversity and evenness index of phyto- and/or zooplankton increased with chlorophyll a concentration. These results suggest zooplankton grazing and limiting nutrient deficiency could lead to change of phytoplankton biomass, but not the phytoplankton community in Lake llgam.

Seasonal Fluctuations of Marine Environment and Phytoplankton Community in the Southern Part of Yeosu, Southern Sea of Korea (여수 남부 협수로 해역의 해양환경과 식물플랑크톤 군집의 계절변동 특성)

  • Noh, Il-Hyeon;Yoon, Yang-Ho;Park, Jong-Sick;Kang, In-Seok;An, Yeong-Kyu;Kim, Seung-Hyun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.151-164
    • /
    • 2010
  • Field observations on the seasonal variations of environmental factors and phytoplankton community were carried out four times at 30 stations in the narrow strait between Yeosu and Dolsan Island of the Korean South Sea from September 2005 to May 2006. The ranges of water temperature, salinity and extinction coefficient in the surface waters were 5.6~26.3, 25.36~33.92 psu and 0.13~2.13, respectively. The water temperature measured higher at Gamak Bay in summer and spring. It measured higher at Yeosuhae Bay in autumn and winter. Salinity showed uniformity of distributions in almost all areas, except for an area near a sewage disposal outlet. Extinction coefficient indicated that the turbidity of Gamak Bay and the area near the sewage disposal outlet were higher than that of the Yeosuhae Bay. In the phytoplankton community were identified a total of 99 species belonging to 51 genera. The species composition showed itself to be various in summer and autumn, but poor in winter and spring with a high ratio of centric diatoms all the year round. Seasonal succession of dominant species were Skeletonema costatum and Chaetoceros curvisetus in summer, Eucampia zodiacus in autumn and winter, and Chaetoceros affinis and Thalassionema nitzschioides inspring. Standing crops of phytoplankton and Chlorophyll $\alpha$ concentration were greatly higher at Gamak Bay in summer with ranges of $0.2{\times}10^4\;cells\;L^{-1}$ to $296{\times}10^4\;L^{-1}$, and $1.94\;L^{-1}$ to $22.12\;L^{-1}$, respectively. From the results of principal component analysis (PCA), the northern part of Dolsan Island was divided into two or three regions from the characteristics of marine environment and phytoplankton community.

Change of Blooming Pattern and Population Dynamics of Phytoplankton in Masan Bay, Korea (마산만 식물플랑크톤의 대발생 양상의 변화와 군집 동태)

  • Lee, Ju-Yun;Han, Myung-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.147-158
    • /
    • 2007
  • To clarify the bloom pattern and species succession in phytoplankton community, the population dynamics with the determination of physico-chemical factors have been studies in Masan Bay, the south sea of Korea, for the periods November 2003-October 2004. Concentration of $NH_4-N$ was always higher than that of $NO_3-N$, which was similar level as compared to other costal areas. $PO_4-P$ concentration was lower than those in other coastal areas but similar to oligotrophic environments. Thus, phosphate seems the limiting nutrient rather than nitrogen. $SiO_2-Si$ concentration was also low as compared to other costal areas. Si:P ratio was low from autumn to winter, suggesting silicate and/or phosphate limitation during this period. The cell density of phytoplankton was high in winter 2003 and early autumn 2004. The carbon biomass was high in winter 2003 and summer 2004. And chlorophyll-a concentration was high in late autumn 2003 and summer 2004. Among 78 species of phytoplankton found in the bay during the investigated period, dominant species were two diatoms of Cylindrotheca closterium, Skeletonema costatum, and three dinoflagellates of Heterocapsa triquetra, Prorocentrum minimum, P. triestinum, and one raphidophyte of Heterosigma akashiwo. P. minimum dominated from late autumn to winter, but it was replaced by H. triquetra in late winter. P. triestinum dominated from late spring to early summer. Simultaneously, H. akashiwo cell density steadily increased, and it became dominant with C. closterium in late summer. With decreasing of H. akashiwo and C. closterium, S. costatum became the most dominant species in autumn. The canonical analyses showed that total phytoplankton cell density related to diatom cell density and it was affected by temperature, and concentrations of $NO_3-N\;and\;PO_4-P$. The carbon bio-mass and $chlorophyll-{\alpha}$ concentration related to diatom- and dinoflagellate cell densities and these were affected by flagellate cell density, salinity, and concentrations of $SiO_2-Si\;and\;PO_4-P$. Last six years monitoring data in Masan city obtained from Korean Meteorological Agency indicates gradual increase in air temperature. And the precipitation decreased especially in spring season. The winter bloom found in 2003 may be caused by the increase in the temperature and this bloom subsequently induced the nutrients depletion, which continued until next spring probably due to no precipitation. Therefore, the spring bloom, which had been usually observed in the bay, might disappear in 2004.

Relationship between Distribution of the Dominant Phytoplankton Species and Water Temperature in the Nakdong River, Korea (낙동강의 식물플랑크톤 우점종의 분포특성 및 수온과의 상관성)

  • Yu, Jae Jeong;Lee, Hye Jin;Lee, Kyung Lak;Lyu, Heuy Seong;Whang, Jeong Wha;Shin, La Young;Chen, Se Uk
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.247-257
    • /
    • 2014
  • The construction of eight large weirs in the Nakdong River, Korea, caused a decrease in the water flow velocity and several physical changes to the water environment. Here, changes in phyto- and zooplankton communities and water quality in the areas near the eight weirs were investigated from 2011 to 2013, and relationships between phytoplankton abundances and environmental factors were analyzed. Special emphasis was given to the succession patterns in algal abundance based on temperature fluctuations. At the eight weirs, 24 dominant species were found. The most abundant phytoplankton species was Stephanodiscus sp. (39.4% of dominant frequency). Cyanobacteria of the genus Microcystis dominated during the summer, with an dominant frequency of 8.5% and cell abundance ratio of 36.6%. Significant correlations were observed between temperature and abundance of eight of the main dominant species; seven species showed positive correlations with temperature. Stephanodiscus sp., however, showed a negative correlation with temperature (r=-0.26, p<0.01). In addition, this species showed a significant negative correlation with the dominant algal species-Aulacoseira granulata and Aphanizomenon flos-aquae, with the zooplankton Copepoda and with Cladocera. On the contrary, seven other dominant species of algae showed significant positive correlations with zooplankton. Thus, we showed that the seasonal succession of plankton communities in the Nakdong River was related to the water temperature changes.

Organic Matter Cycle by Biogeochemical Indicator in Tidal Mud Flat, West Coast of Korea (생지화학적 지표를 이용한 서해안 갯벌 퇴적층에서의 유기물 순환에 관한 연구)

  • Lee, Dong-Hun;Lee, Jun-Ho;Jeong, Kap-Sik;Woo, Han Jun;Kang, Jeongwon;Shin, Kyung-Hoon;Ha, Sun-Yong
    • Ocean and Polar Research
    • /
    • v.36 no.1
    • /
    • pp.25-37
    • /
    • 2014
  • To understand the degradation processes of organic matter related to sulfate reduction by Sulfate Reduction Bacteria (SRB) in the tidal flat sediments of Hwang-do and Sogeun-ri, Tae-an Peninsula in Chungnam-do, biogeochemical characteristics were analyzed and highlighted using specific microbial biomarkers. The organic geochemical parameters (TOC, ${\delta}^{13}C_{org}$, C/N ratio, long-chain-n-alkane) indicate that most of the organic matter has been derived from marine phytoplankton and bacteria in the fine-grained sediment of Sogeun-ri, although terrestrial plant components have occasionally been incorporated to a significant degree in the coarse-grained sediment of Hwang-do. The concentration of sulfate in pore water is a constant tendency with regard to depth profile, while methane concentration appears to be slightly different with regard to depth profile at the two sites. Especially, the sum of bacteria fatty acid (a-C15:0 + i-C15:0 + C16:1w5) confirms that the these concentrations in Sogeun-ri are related to the degradation of Benzene, Toluene, Ethylbenzene and Xylene (BTEX) compounds from the crude oil retained in the sediments as a result of the Hebei Spirit oil-spill accident in 2007. The methane-related microbial communities as shown by lipid biomarkers (crocetane, PMI) are larger in some sedimentary sections of Hwang-do than in the Sogeunri tidal flat. These findings suggest that methane production by microbiological processes is clearly governed by SRB activity along the vertical succession in organic-enriched tidal flats.

On the Phyroplankton Distribution in the Kwangyang Bay (光陽灣 植物 플랑크톤 分布에 관한 硏究)

  • Shim, Jae Hyung;Shin, Yoon Keun;Lee, Won Ho
    • 한국해양학회지
    • /
    • v.19 no.2
    • /
    • pp.172-186
    • /
    • 1984
  • Phyroplankton samples were collected seasonally from March to December, 1982 in order to study the distribution of phyroplankton and their relation to environmental factors in Kwang-yang Bay. A total of 211 taxa of phyroplankton representing 67 genera, 196 species, 14 varieties, and 1 forma have been identified. Seasonal succession of dominant species is evident in this bay; Rhiwosolenia deiicatula, Chroomonas sp. being predominant in spring, Chroomonas sp. in summer, Chaetoceros debilis, C. socialis in autumn, and Skeletonema costatum, Chroomonas sp. in winter, repectively. The standing crops of the phyroplankton vary with time, and hare relevance to NH$\_$3/-N concentration, grazing pressure, and temperature. In spring, diatom blooming is relatively well correlated with the NH$\_$3/-N concentration. The species diversity is rather low in general. The fraction of nanoplankton total cell number represents an annual average of 36.5%, showing a meaningful contribution to the primary production and food web in this water system. Spatial distribution of phytoplankton indicates that this bay could e divided into three chracteristic areas; Seomjin-river mouth area heavily influenced by fresh water, western-half area scarecely affected by the oceanic water, and eastern-half area heavily influenced by the oceanic water. The industrial effluents from the YeochunIndustrial Complex also affected the spatial distribution of phyroplankton.

  • PDF

Effects of Benzo〔a〕pyrene on Growth and Photosynthesis of Phytoplankton (식물플랑크톤의 성장과 광합성에 대한 benzo〔a〕pyrene의 영향)

  • Kim, Sun-Ju;Shin, Kyung-Soon;Moon, Chang-Ho;Park, Dong-Won;Chang, Man
    • Korean Journal of Environmental Biology
    • /
    • v.22
    • /
    • pp.54-62
    • /
    • 2004
  • We examined the impacts of anthyopogenic pollutant (benzo〔a〕pyrene) on the growth and photosynthesis of five marine phytoplankton species (Skeletonema costatum, Heterosigma akashiwo, Prorocentrum dentatum, P. minimum, Aknshiwo sanguinea), which are dominant in Korean coastal water. After the 72 h exposure to benzo〔a〕pyrene, the dramatic decrease in cell numbers was observed in the range of 1 to 10 $\mu\textrm{g}$ L$^{-1}$ for S. costatum, P. minimum, P. dentatum, whereas for A. sanguinea and H. akashiwo at the low concentrations 0.1 to 1 $\mu\textrm{g}$ L$^{-1}$ . Among the 5 phytoplankton species, the highest growth inhibition concentration ($IC_{50}$/) was 6.20 $\mu\textrm{g}$ L$^{-1}$ for P. minimum, followed by 2.14 $\mu\textrm{g}$ L$^{-1}$ for P. dentatum, 1.68 $\mu\textrm{g}$ L$^{-1}$ for S. costatum, 0.74 $\mu\textrm{g}$ L$^{-1}$ for H. akashiwo, 0.10 $\mu\textrm{g}$ L$^{-1}$ for A. sanguinea. The five species exposed to the low concentration of 1 $\mu\textrm{g}$ L$^{-1}$ were recovered after transferring to new media, but the species exposed to the high concentrations of 10 and 100 $\mu\textrm{g}$ L$^{-1}$ were not recovered, with the exception of P. minimum. Those results indicate that the thecate dinoflagellate P. minimum is most tolerant to the chemical and the athecate dinoflagellate A. sanguinea is not. Geneyally, the cell-specific photosynthetic capacity of H. akashiwo exposed to the low concentrations of 0.1 and 1 $\mu\textrm{g}$ L$^{-1}$ was higher than that of the cells in the control, whereas the cells exposed to the high concentrations of 5 and 10 $\mu\textrm{g}$ L$^{-1}$ showed the negligible photosynthetic level by the first few days of the experiment. In the case of the cells exposed to the concentration of 5 $\mu\textrm{g}$ L$^{-1}$ , after 12 days of the experiment the photosynthetic capacity was increased toward the end of the experiment. This indicates that H. akashiwo may utilize the benzo〔a〕pyrene as a carton source for its growth when exposed to low concentrations. Results suggest that anthropogenic pollutants such as benzo〔a〕pyrene may have significant influence on the succession of phytoplankton species composition and the primary production in coastal marine environments.

Cyanobacterial Development and Succession and Affecting Factors in a Eutrophic Reservoir (부영양 저수지에서 남조류의 발달과 천이 및 영향 요인)

  • Kim, Ho-Sub;Hwang, Soon-Jin;Kong, Dong-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.121-129
    • /
    • 2007
  • This study was conducted to evaluate the causes and effects of cyanobacterial development and succession in a shallow eutrophic reservoir from March 2003 to February 2004. Phytoplankton succession, sedimentation rate, and sediment composition were analyzed. Algal bioassay also was conducted with the consideration of light, water temperature and nutrients. Cyanobacteria dominated throughout the year, except for spring season (March${\sim}$April) in which diatoms and flagellates dominated. Total cell density increased in July and November when P loading through inflows was high. Oscillatoria spp. and Aphanizomenon sp. were dominant in May and June, respectively, but replaced with Microcystis spp. in July. Thereafter, Microcystis spp. sustained until December, and again shifted to Oscillatoria spp. and Aphanizomenon sp. The dominance of Oscillatoria spp. in May was accompanied with high TN/TP ratio and the increase of water temperature and light intensity. While the dominance of Microcystis spp. was related with relatively low TN/TP ratio, ranging from 46 to 13 (average: 27). The sedimentation rate was highest in March (0.6 m $day^{-1}$) when diatoms dominated. During the period of cyanobacterial dominance, relatively high sedimentation rate was observed in May (0.4 m $day^{-1}$) and October (0.36m $day^{-1}$). C/N ratio of the sediment ranged $6{\sim}8$. Inorganic P concentration in the pore water was low when DO concentration was < 2 mg $O_2$ $L^{-1}$ in the hypolimnion, reflecting the P release from the sediment. Cyanobacterial growth rate depended on phosphorus concentration and water temperature, and high P concentration compensated for the low temperature in the growth rate. Our results suggest that the potential of cyanobacterial development and substantiality in eutrophic reservoirs be high throughout the year, as being supplied with enough P, and emphasize the consideration of sediment man. agement for the water quality improvement and algal bloom control.

The Limnological Survey of Major Lakes in Korea (4): Lake Juam (국내 주요 호수의 육수학적 조사(4) : 주암호)

  • Kim, Bom-Chul;Heo, Woo-Myung;Lim, Byung-Jin;Hwang, Gil-Son;Choi, Kwang-Soon;Choi, Jong-Soo;Park, Ju-Hyun
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.30-44
    • /
    • 2001
  • In this study limnological characteristics of Lake Juam was surveyed from June 1993 to May 1994 in order to provides important information regarding water resources. Secchi disc transparency, epilimnetic chlorophyll a (chi-a), total nitrogen (TN), total phosphorus (TP) concentration and primary productivity were in the range of $2.0{\sim}4.5\;m$, $0.9{\sim}13.6\;mgChl/m^3$, 0.78$\{sim}$2.32 mgN/l, $11{\sim}56\;mgP/m^3$, $270{\sim}2.160\;mgCm^{-2}\;day^{-1}$, respectively. On the basis of TP, Chl-a and Secchi disc depth, the trophic state of Lake Juam can be classied as mesotrophic lake. The phosphorus inputs from non-point sources are concentrated in heavy rain episodes during the monsoon season. As a result, phosphorus concentration are higher in summer than in winter. TP loading from the watershed were estimated to be $0.9\;gPm^{-2}yr^{-1}$, which correspond to a boundary of the critical loading ($1.0\;gPm^{-2}yr^{-1}$) for eutrophication. From the results of the algal assay, both phosphous and nitrogen act as limiting nutrients in algal growth. The seasonal succession of phytoplankton community structure in Lake Juam was similar to that observed in other temperate lakes. Diatoms (Asterionella formosa and Aulacoseira granulate var. angustissima)fujacofeira BraHuJafa uar. aHgusHrsiaia) weredominant in spring and winter, cyanobacteria) were dominant in warm season. The organic carbon, nitrogen and phosphorus content of lake sediment were $9.5{\sim}14.0\;mgC/g$, $1.01{\sim}1.82\;mgN/g$ and $0.51{\sim}0.65\;mgP/g$, respectively. The allochthonous organic carbon loading from the watershed and autochthonous organic carbon loading by primary production of phytoplankton were determined to be 1,122 tC/yr and 6,718 tC/yr, respectively. To prevent eutrophication of Lake Juam, nutrient management of watershed should be focus on reduction of fertilizer application, proper treatment of manure, and conservation of topsoil as well as point source.

  • PDF

The Limnological Survey of a Coastal Lagoon in Korea (3): Lake Hwajinpo (동해안 석호의 육수학적 조사 (3): 화진포호)

  • Kwon, Sang-Yong;Lee, Jae-Il;Kim, Dong-Jin;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.12-25
    • /
    • 2004
  • Physicochemical parameters, plankton biomass, and sediment were surveyed from 1998 to 2000 at two months interval in a eutrophic coastal lagoon(Lake Hwajinpo, Korea). The lake is separated from the sea by a narrow sand dune. Littoral zone is well vegetated with leafing-leaved aquatic plants. The lake basin is divided into two subbasins by a shallow sill. It has intrusion of seawater by permeation and stormy waves. Stable chemoclines are formed by salinity difference at 1m depth all the year round. DO was often very low (< 1 mg$O_2\;L^{-1}$) at hypolimnion. Temperature inversions were observed in November. Nitrate and ammonium concentrations were very low(< (1.1 mgN $L^{-1}$), even though TN was usually 2.0 ${\sim}$ 3.5 mgN $L^{-1}$. TN/TP was generally lower than the Redfield ratio. Transparency was 0.2 ${\sim}$ 1.7 m, and COD, TP, and TN of sediment were 3.1 ${\sim}$ 40.3 mg$O_2\;g^{-1}$, 0.91 ${\sim}$ 1.39 mgP $g^{-1}$, and 0.34 ${\sim}$ 3.07 mgN $g^{-1}$, respectively. Phytoplankton chlorophyll- a concentrations were mostly over 40 mg $m^{-3}$. Two basins showed different phytoplankton communities with Oscillatoria so., Trachelomonas sp., Schizochlamys gelatinosa, and Anabaena spiroides dominant in South basin, and with Trachelomons sp., Schroederia so., schizochlamys gelatinosa, and Trachelomonas sp. dominant in the North basin. The seasonal succession of phytoplankton was very fast, possibly due to sudden changes in physical conditions, such as wind, turbidity, salinity and light.