• 제목/요약/키워드: phytoextraction

검색결과 29건 처리시간 0.019초

Distribution of Heavy Metal Content in Plants and Soil from a Korean Shooting Site

  • Baek, Kyung-Hwa;Kim, Hyun-Hee;Park, Jin-Sung;Bae, Bumhan;Chang, Yoon-Young;Lee, In-Sook
    • The Korean Journal of Ecology
    • /
    • 제27권4호
    • /
    • pp.231-237
    • /
    • 2004
  • In this research we determined the levels of heavy metals in soil and metal-accumulating plants from a D military shooting site in the Kyungkido district of Korea. The data obtained may be useful in the development of methods for the efficient phytoremediation of contaminated soil. The total Cd, Cu, Pb, and Zn concentrations in the soil were found to be 1.67-5.04 mg/kg, 52.51-106.26 mg/kg, 37.24-90.32mg/kg, and 111.45-188.19mg/kg, respectively. These results show that the soil is contaminated with Cd and Cu, and this contamination is particularly severe in the case of Cd because of its high bioavailability (25-57% of the total metal in the soil is exchangeable). The high concentrations of heavy metals in the shoots of Persicaria thunbergii and Artemisia princeps var. orientalis indicate that these plants (all perennial herbs) accumulate heavy metal efficiently. Further, these plants were found to contain more Cd in its shoots (>60% of the total metal found in the plant) than any other plant; these results indicate that these native species are particularly suited to use in Cd phytoextraction.

Effect of button mushroom compost on mobilization of heavy metals by sunflower

  • Kyeong, Ki-Cheon;Kim, Yong-Gyun;Lee, Chan-Jung;Lee, Byung-Eui;Lee, Heon-Hak;Yoon, Min-Ho
    • 한국버섯학회지
    • /
    • 제12권3호
    • /
    • pp.163-170
    • /
    • 2014
  • The potential ability of Button mushroom compost (BMC) to solubilize heavy metals was estimated with metal contaminated soils collected from abandoned mines of Boryeong area in South Korea. The bacterial strains in BMC were isolated for investigating the mobilization of metals in soil or plant by the strains and identified according to 16S rRNA gene sequence analysis. When metal solubilization potential of BMC was assessed in a batch experiment, the BMC was found to be capable of solubilizing metals in the presence of metals (Co, Pb and Zn) and the results showed that inoculation of BMC could increase the concentrations of water soluble Co, Pb and Cd by 35, 25 and 45% respectively, than those of non-inoculated soils. BMC-assisted growth promotion and metal uptake in sunflower (Helianthus annuus) was also evaluated in a pot experiment. In comparison with non-inoculated seedlings, the inoculation led to increase the growth of H. annuus by 27, 25 and 28% respectively in Co, Pb and Zn contaminated soils. Moreover, enhanced accumulation of Co, Pb and Zn in the shoot and root systems was observed in inoculated plants, where metal translocation from root to the above-ground tissues was also found to be enhanced by the BMC. The apparent results suggested that the BMC could effectively be employed in enhancing phytoextraction of Co, Pb and Zn from contaminated soils.

Mobilization of Heavy Metals in Contaminated Soils induced by Bioaugmentation of Shewanella xiamenensis HM14

  • Walpola, Buddhi Charana;Arunakumara, K.K.I.U.;Song, Jun-Seob;Lee, Chan-Jung;Yoon, Min-Ho
    • 한국토양비료학회지
    • /
    • 제47권4호
    • /
    • pp.290-298
    • /
    • 2014
  • A bacterial strain with the potential ability to solubilize heavy metals was isolated from heavy metal contaminated soils collected from abandoned mines of Boryeong area in South Korea. The bacterial strain with the highest degree of metal resistance was shown to have close proximity with Shewanella xiamenensis FJ589031, according to 16S rRNA sequence analysis, and selected for investigating the mobilization of metals in soil or plant by the strain. The strain was found to be capable of solubilizing metals both in the absence and in the presence of metals (Co, Pb and Cd). Metal mobilization potential of the strain was assessed in a batch experiment and the results showed that inoculation could increase the concentrations of water soluble Co, Pb and Cd by 48, 34 and 20% respectively, compared with those of non-inoculated soils. Bacterial-assisted growth promotion and metal uptake in sunflower (Helianthus annuus) was evaluated in a pot experiment. In comparison with non-inoculated seedlings, the inoculation led to increase the growth of H. annuus by 24, 18 and 16% respectively in Co, Pb and Cd contaminated soils. Moreover, enhanced accumulation of Co, Pb and Cd in the shoot and root systems was observed in inoculated plants, where metal translocation from root to the above-ground tissues was also found to be enhanced by the strain. Plant growth promotion and metal mobilizing potential of the strain suggest that the strain could effectively be employed in enhancing phytoextraction of Co, Pb and Cd from contaminated soils.

Contrast Effect of Citric Acid and Ethylenediaminetetraacetic Acid on Cadmium Extractability in Arable Soil

  • Lee, Hyun Ho;Hong, Chang Oh
    • 한국토양비료학회지
    • /
    • 제48권6호
    • /
    • pp.634-640
    • /
    • 2015
  • Chelating agents have been proposed to improve the efficiency of phytoextraction of heavy metal hyperaccumulator. However, little studies to elucidate mechanism of chelating agents to increase cadmium (Cd) extractability have been conducted. The objectives of this study were to evaluate effect of different chelating agents on Cd extractability and to determine mechanism of Cd mobilization affected by these agents. An arable soil was spiked with inorganic Cd ($CdCl_2$) to give a total Cd concentration of $20mgCdkg^{-1}$. Ethylenediaminetetraacetic acid (EDTA) and citric acid (CA) were selected and mixed with the arable soil at the rates of 0 and $5mmolkg^{-1}$. The mixture soils were incubated at $25^{\circ}C$ for 4 weeks in dark condition. Concentration of F1 Cd fractions (water soluble) significantly increased with addition of EDTA but did not changed with addition of CA. Especially; concentration of F5 Cd fractions (residual) significantly increased with addition of CA. Increase in water soluble with EDTA might be attributed to complexation of Cd and EDTA. Dissolved organic carbon concentration significantly increased with EDTA addition, but did not with CA implying that considerable amount of CA was decomposed to inorganic carbon by microorganism. Log activity of carbonate ($CO_3{^{2-}}$) which might be generated from CA increased with addition of CA. Increase in residual Cd fraction might be due to precipitation of Cd as $CdCO_3$. As a result, EDTA was effective in increasing Cd extractability, by contrast CA had significant effect in reducing Cd extractability.

수경재배에 의한 중금속 (As 및 Cd) 오염토양의 식물상 복원공법 적용 식물종 선별 (Selection of Plant Species for Phytoremediation of Heavy Metal (As and Cd) Contaminated Soil using Hydroponic Culture)

  • 김범준;배범한;김영훈
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제29권1호
    • /
    • pp.28-38
    • /
    • 2024
  • Phytoremediation presents a low-carbon and eco-friendly solution for heavy metal-contaminated soils, which pose great health and environmental risks to humans and ecosystems. A hydroponic culture was used to quantitatively assess the phytoremediation potential of plant species to remediate As or Cd-contaminated soil in field application. This study examined the growth, uptake, and distribution of Cd in the roots and shoots of Phalaris arundinacea and Brassica juncea in hydroponic conditions with Cd concentrations ranging from 0 to 20 mg/L for 10 days. Additionally, Aster koraiensis and Pteris multifida were cultivated in hydroponic conditions containing As concentrations ranging from 0 to 40 mg/L for 10 days. The concentrations of Cd in the above-ground part and root tissues of P. arundinacea and B. juncea reached a maximum of 147.7 and 1926.7 mg/kg-D.W.(Dry Weight), and 351.6 and 11305.5 mg/kg-D.W., respectively. Bioconcentration factor (BCF) for P. arundinacea and B. juncea were 68.9 and 122.3, respectively. Both species exhibited a translocation factor (TF) of less than 0.1, indicating their eligibility for phytostabilization. Aster koraiensis exhibited significant As accumulation of 155.1 and 1306.7 mg/kg D.W. in the above-ground part and root, respectively. However, this accumulation resulted with substantial weight loss and the manifestation of toxic symptoms. P. multifida exhibited higher accumulation of As (345.1 mg/kg-D.W.) in the fronds than in the roots (255.4 mg/kg-D.W.), corresponding to BCF values of 18.6 and 7.6, respectively, and a TF greater than 1.2. A TF value greater than 1.0 indicates that P. multifida is a viable option for phytoextraction.

칼럼 반응조에서 Phosphate Solubilizing Microorganism(PSM)과 EDTA에 의한 납 오염토양의 식물상 복원 증진에 관한 비교연구 (A Comparative Study on Enhanced Phytoremediation of Pb Contaminated Soil with Phosphate Solubilizing Microorganism(PSM) and EDTA in Column Reactor)

  • 남윤선;박영지;이인숙;배범한
    • 대한환경공학회지
    • /
    • 제30권5호
    • /
    • pp.500-506
    • /
    • 2008
  • 토양칼럼반응조에서 Pb 오염토양(1,200 mg/kg)에 강아지풀로 식물상복원공법을 적용하였을 때 EDTA 혹은 인용출미생물(Phosphate solubilizing microorganism) 주입이 식물의 Pb 섭취 및 연직이동에 주는 영향을 연구하였다. EDTA 주입량은 Pb 오염총량과 동일한 mol수이었으며, 6회에 걸쳐 분할 주입하는 방법과 1회에 일괄적으로 처리하는 2가지 방법을 적용하였다. 그 결과 뿌리에 축적된 Pb의 농도는 control(164.7 mg/kg)에 비하여 PSM 처리구(M)는 2.6배, EDTA 분할처리구(ES)는 3.0배, EDTA 일괄처리구(E)는 3.3배가 증가하였고, 줄기에서는 control(8.1 mg/kg)에 비하여 M 처리구는 27배, ES 처리구는 37배, E 처리구 40배가 증가하였다. 뿌리로부터 지상부로 이동한 납의 비율은 control에서 0.06이지만, E 및 ES 처리구는 0.6, M 처리구는 0.5로 큰 차이가 없었다. Pb 제거량은 E 처리구가 많았고, EDTA의 연직이동은 ES 처리구에서 큰 것으로 나타나, 식물수확기 전에 EDTA를 일괄주입하는 방안이 효율적인 것으로 판명되었다. PSM 처리는 EDTA보다 Pb 제거량은 낮았지만 Pb의 식물섭취가 증가하였고, 식물의 성장 및 토양 내 미생물 활성도를 증진하는 장점이 있어 유독한 EDTA를 대체할 수 있을 것으로 판단된다.

식물정화공법에서 다양한 중금속의 식물체로의 흡수 및 축적 특성 비교: 식물체 종류, 중금속 종류, 토양 내 중금속 농도를 중심으로 (Characteristics of Heavy Metals Uptake by Plants: Based on Plant Species, Types of Heavy Metals, and Initial Metal Concentration in Soil)

  • 정슬기;김태성;문희선
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제15권3호
    • /
    • pp.61-68
    • /
    • 2010
  • Phytoextraction, one type of phytoremediation processes, has been widely used in the removal of heavy metals from polluted soil. This paper reviewed literature on metal uptake by plants and characterized the metal uptake by types of metals (Zn, Cu, Pb, Cd, and As), plant species, initial metal concentrations in soil and the distribution of metals in different parts of plants. The potential of metal accumulation and transport by plants was closely related to plants species, types of metals, and initial metal concentrations in soil. The plants belonging to Brassicaceae, Solanaceae, Poaceae, and Convolvulaceae families have shown the high potential capacity of Cd accumulation. The Gentianaceae, Euphorbiaceae, and Polygonaceae families have exhibited relatively high Pb uptake potential while the Pteridaceae and Cyperaceae families have shown relatively high Zn uptake potential. The Pteridaceae family could uptake a remarkably high amount of As compared with other plant families. The potential metal accumulation per plant biomass has increased with increasing initial metal concentration in soil up to a certain level and then decreased for Cd and Zn. For As, only Pteris vittata had a linear relationship between initial concentration in soil and potential of metal uptake. However, a meaningful relationship for Pb was not found in this study. Generally, the plants having high metal uptake potential for Cd or Pb mainly accumulated the metal in their roots. However, the Euphorbiaceae family has accumulated more than 80% of Pb in shoot. Zn has evenly accumulated in roots and stems except for the plants belonging to the Polygonaceae and Rosaceae families which accumulated Zn in their leaves. The Pteridaceae family has accumulated a higher amount of As in leaves than roots. The types of metals, plant species, and initial metal concentration in soil influence the metal uptake by plants. It is important to select site-specific plant species for effective removal of metals in soil. Therefore, this study may provide useful and beneficial information on metal accumulation by plants for the in situ phytoremediation.

Mobilization of Heavy Metals Induced by Button Mushroom Compost in Sunflower

  • Lee, Jong-Jin;Lee, Heon-Hak;Kim, Sung-Chul;Yoo, Jeoung-Ah;Lee, Chan-Jung;Yoon, Min-Ho
    • 한국토양비료학회지
    • /
    • 제48권5호
    • /
    • pp.469-476
    • /
    • 2015
  • Button mushroom compost (BMC) was prepared by fermenting the mixture of waste button mushroom bed collected from Boryeong area in South Korea (4): sawdust (8) : pig and fowl manure (1) for 40 days at $30^{\circ}C$. The BMC compromised diverse microorganisms including aerobic bacteria $8.1{\times}10^6cfu\;g^{-1}$, Gram negative bacteria $1.7{\times}10^7cfu\;g^{-1}$, genus Bacillus $6.4{\times}10^6cfu\;g^{-1}$, genus Pseudomonas $1.5{\times}10^4cfu\;g^{-1}$, actinomycetes $1.0{\times}10^4cfu\;g^{-1}$, and fungi $3.5{\times}10^3cfu\;g^{-1}$. BMC was used as a microbial inoculant for estimating the mobilization of heavy metals in soil or plant. When metal solubilization potential of BMC was assessed in a batch experiment, the inoculation of BMC was shown to increase the concentrations of water soluble Co, Pb, Cd, and Zn by 29, 26, 27, and 43% respectively, than those of non-inoculated soils. BMC-assisted growth promotion and metal uptake in sunflower (Helianthus annuus) was also evaluated in a pot experiment. In comparison with non-inoculated seedlings, the inoculation led to increase the growth of H. annuus by 17, 15, 18, and 21% respectively in Co, Pb, Cd, and Zn contaminated soils. Moreover, enhanced accumulation of Co, Pb, Cd, and Zn in the shoot and root systems was observed in inoculated plants, where metal translocation from root to the above-ground tissues was also found to be enhanced by the BMC. The apparent results suggested that the BMC could effectively be employed in enhancing phytoextraction from the soils contaminated with heavy metals such as Co, Pb, Cd, and Zn.

충남 서부 백동 사문암지역 식물체의 중금속 함량 (Heavy metal concentration of plants in Baekdong serpentine area, western part of chungnam)

  • 송석환;김명희;민일식;장인수
    • 한국토양환경학회지
    • /
    • 제4권2호
    • /
    • pp.113-125
    • /
    • 1999
  • 충남 서부 백동 사문암 지역에서 식물체내 중금속 오염정도를 알기 위해 사문암 지역과 각섬석 편암 및 편마암을 포함하는 인접 변성암으로 구성된 비 사문암 지역으로 나누어 식물체를 채취하였고 이들과 관계를 알기 위해 식물체가 서식하는 근접 지점에서 상부토양 및 모암시료도 채취 분석하였다. 이 결과 식물체에서 사문암 지역은 Ni. Cr, Co함량이, 비 사문암 지역은 Fe, Zn함량에서 각각 높았고 두 비사문암 지역 중 대부분 원소가 각섬석 편암 지역에서 높았다. 식물체내 평균 Ni, Co, Cr함량은 사문암, 각섬석 편암 및 편마암 순으로 감소하였고 쑥과 참억새의 절대원소함량은 사문암 지역에서 Fe, Ni 또는 Cr, Zn, Co, As, Sc순서로, 편마암 지역에서는 Fe, Zn, Cr, Ni순서로 감소했고 식물체 부분별 차이에서 대부분 원소에서 지하부가 높았다. 사문암과 편마암 지역 식물체 원소 함량 상대비에서 쑥에 비해 참억새가 대부분의 원소에서 낮은 값을 보였는데 이는 쑥보다 참억새가 척박한 사문암 토양내에서의 낮은 흡수량을, 그리고 비옥한 편마암 토양에서 높은 흡수량을 보이고 있음을 암시한다. 암석과 토양의 절대 원소 함량 비교에서 사문암 지역이 높은 Ni, Co및 Cr함량을 보였고, 이들 원소의 함량은 사문암, 각섬석 편암 및 편마암의 순으로 감소됐는데 이는 상부토양이 모암조성을 반영하기 때문일것으로 추정된다. 암석 및 상부토양의 절대 원소함량에서 사문암지역은 Fe, Cr또는 Ni, Co, Zn, As, Sc, 편마암지역은 Fe, Zn, Cr, Ni, Co또는 Sc순서로 각각 감소했으며 암석과 토양의 상대비는 사문암 지역이 Cr, As, Fe, Sc, Co, Ni, Zn, 편마암 지역은 Sc, Fe, Ni, Zn Cr, Co순서로 각각 감소했다. 상부토양과 식물체의 원소 함량 비교에서 토양이 대부분 원소에서 골았고, 각 원소의 증감에 따라 식물체와 토양은 유사한 경향을 보였다. 토양과 식물체의 각 원소 함량차이에서 사문암, 각섬석 편암, 편마암 순으로 감소했으며 편마암지역 토양이 식물체의 함량에 가장 근접했다. 토양과 식물체의 각 원소함량 관계에서 동종의 개체일지라도 상부토양차이에 따라서 식물체내 원소 흡수량은 상당한 차이를 보였다. 척박한 사문암 지역의 식물이 변성암 지역의 식물과 비교하여 높은 Ni, Co, Cr 함량을 보이면서도 생존하는 것은 이들 식물이 척박한 사문암 지역에서도 생존할 수 있는 내성종임을 암시한다. 상부지각 암석 평균치와 비교에서 사문암 지역의 쑥과 참억새는 상부지각 암석 평균치보다 Ni, Cr 함량에서 높았는데 이는 사문암 지역 식물체내에는 이들 원소들이 과량 축척되었음을 의미한다. 위 연구 결과와 기존 사문암을 모재로 발달된 중금속에 오염된 토양에 대한 연구들을 재고해 보았을 때 식물체를 이용한 토양내 중금속 제거를 위해서는 사문암 지역내 식물체의 생태학적인 연구와 중금속 축척정도등과 같은 추가적인 연구가 필요함을 강력히 암시한다.

  • PDF