• Title/Summary/Keyword: phytochemical compounds

Search Result 290, Processing Time 0.032 seconds

Phenolic Compounds from Barks of Actinidia arguta Planchon Growing in Korea and its Anti-Oxidative and Nitric Oxide Production Inhibitory Activities (국내산 다래나무 수피의 페놀성 화합물의 항산화 및 Nitric Oxide 생성 억제 활성)

  • Lim, Hyun-Woo;Shim, Jae-Geul;Choi, Hyung-Kyoon;Lee, Min-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.3 s.142
    • /
    • pp.245-251
    • /
    • 2005
  • Phytochemical examination of the barks of Actinidia arguta led to the isolation of five flavonoids. Structures of compounds were elucidated as catechin (1), (-)-epicatechin (2), quercetin (3), $quercetin-3-O-{\beta}-D-glucopyranoside$ (4), $quercetin-3-O-{\beta}-D-galactopyranoside$ (5) by comparison with previously reported spectral evidences. To investigate the anti-oxidative effect and nitric oxide (NO) production inhibitory activity of these compounds, DPPH radical scavenging activity and nitric oxide production inhibitory activity in $IFN-{\gamma}$, LPS stimulated RAW 264.7 cell were examined. The $IC_{50}s$ were determinied as follows : $1\;$IC_{50}=26.61\;{\mu}g/ml$, $2\;IC_{50}=25.30\;{\mu}g/ml$, $3\;IC_{50}=20.41\;{\mu}g/ml$, $4\;IC_{50}=18.23\;{\mu}g/ml$ , $5\;IC_{50}=30.46\;{\mu}g/ml$, $6\;IC_{50}=28.0;{\mu}g/ml$, $7\;IC_{50}=27.24\;{\mu}/ml$. These NO production inhibitory effects were significantly different compared with the positive control, L-NMMA $(IC_{50}=20.77\;{\mu}g/ml)$, respectively. Compound $1\;(IC_{50}=6.19\;{\mu}g/ml)$, $2\;(IC_{50}=8.98\;{\mu}g/ml)$, $3\;(IC_{50}=7.30\;{\mu}g/ml)$ and $4\;(IC_{50}=7.64\;{\mu}g/ml)$ also showed potent antioxidative activities similar level to ascorbic acid $(IC_{50}=9.22\;{\mu}g/ml)$. These results suggest that barks of A. arguta have a potent anti-oxidative and anti-inflammatory activity.

Analysis of Phytochemicals in Popular Medicinal Herbs by HPLC and GC-MS (HPLC와 GC/MS를 활용한 약용식물 유래 phytochemicals 분석)

  • Cho, Hyun-Jung;Yoo, Dong-Chan;Cho, Hyun-Nam;Fan, Lu-An;Kim, Hee-Joon;Khang, Kong-Won;Jeong, Ho-Soon;Yang, Seun-Ah;Lee, In-Seon;Jhee, Kwang-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.277-282
    • /
    • 2008
  • Oriental herbs are reported as having potent functions for preventing many types of diseases. They also appear to have positive effects and potential capabilities for skin care. Among the many oriental herbs that are available, we chose to analyze four medicinal herbs, Korean red ginseng, Artemisia capillaries Thunb, Schizonepeta tenuifolia Briq, and Foeniculum vulgare Mill, because all are popular and considered as favorite medicinal plants in Korea. Extracts of the herbs were obtained by various methods such as using distilled water, ethyl ether, methanol, ethanol, benzene, 1-butanol, and chloroform. Nine phytochemicals were detected in the extracts: maltol, adenosine, b-pinene, menthone, pulegone, limonene, anethole, estragole, and fenchone, which reportedly have multi-functionalities. All phytochemicals were analyzed quantitatively by various chromatographic techniques such as HPLC and gas chromatography-mass (GC-MS) spectrometry. This article also presents the optimum conditions for extracting these 9 targeted phytochemical compounds that were derived from 4 popular oriental herbs, which could be useful for the efficient preparation of each phytochemical.

Increased Antioxidative Activity of Fermented Ligusticum striatum Makino Ethanol Extract by Bioconversion using Lactobacillus plantarum BHN-LAB 129 (Lactobacillus plantarum BHN-LAB 129의 생물전환공정을 통한 천궁 발효 추출물의 항산화 활성 증대)

  • Kim, Byung-Hyuk;Jeong, Su Jin;Jang, Jong-Ok;Lee, Jun-Hyeong;Park, YeEun;Kim, Jung-Gyu;Kwon, Gi-Seok;Hwang, Hak-Soo;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.29 no.8
    • /
    • pp.846-853
    • /
    • 2019
  • Phytochemical compounds of Ligusticum striatum Makino are used as traditional medicinal herbs in Asia. These compounds are reported to have pain relief and antioxidant activities in gynecological and brain diseases. In this study, we investigated the antioxidant effects of Ligusticum fermented ethanol extract from Lactobacillus plantarum BHN-LAB 129 isolated from Kimchi, a Korean traditional food. The total polyphenol and total flavonoid contents increased by about 116.2% and 281.0% respectively, in the fermented Ligusticum extract as compared with those in the nonfermented Ligusticum ethanol extract. Superoxide dismutase-like (SOD), DPPH radical scavenging, ABTS radical scavenging, and reducing power activities increased by around 139.9%, 199.6%, 301.0%, and 137.1%, respectively, in the fermented Ligusticum ethanol extract as compared with these parameters in the nonfermented Ligusticum ethanol extract, respectively. In conclusion, the fermented Ligusticum ethanol extract with L. plantarum BHN-LAB 129 was effective in increasing the antioxidant effects. The bioconversion process in this study points to the potential of using Ligusticum to produce phytochemical-enriched natural antioxidant agents with high added value. The findings may prove useful in the development of improved foods and cosmetic materials.

Phytochemical constituents of Coix lachryma-jobi var. ma-yuen roots and their tyrosinase inhibitory activity (율무근의 식물화학적 성분 연구 및 Tyrosinase 저해 활성)

  • Choi, Yun-Hyeok;Choi, Chun Whan;Lee, Jae Yeon;Ahn, Eun-Kyung;Oh, Joa Sub;Hong, Seong Su
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.1
    • /
    • pp.49-54
    • /
    • 2017
  • In the course of screening tyrosinase inhibitory activity, EtOAc-soluble fraction of Coix lachryma-jobi var. mayuen Stapf. (Gramineae) roots showed significant inhibition. Further fractionation of the EtOAc-soluble fraction resulted in six compounds, which were identified as (+)-icariol $A_2$ (1), zhepiresionol (2), 4-hydroxybenzaldehyde (3), trans-${\rho}$-coumaric acid (4), N-(2-hydroxy-4-methoxyphenyl)-2-hydroxyacetamide (5), and coixol (6). The chemical structures of these compounds were identified on the basis of spectroscopic methods (MS, 1D and 2D NMR) and comparison with literature values. Compound 1 was first reported from this plant. Also, this is the first time that the isolation of compound 5 has been reported from nature source. Among the isolated compounds, compounds 4 and 6 showed enzyme inhibitory activity, with $IC_{50}$ values of 6.5 and $62.4{\mu}M$, respectively, in comparison with these of positive control, arbutin.

Phytochemical Constituents of Polytrichum commune (솔이끼로부터 플라보노이드 성분의 분리)

  • Nam, Jung-Hwan;Kim, Min-Young;Yoo, Young-Min;Cho, In-Sook;Kim, Su-Jeong;Yoo, Dong-Lim;Nam, Chun-Woo;Seo, Jong-Taek;Lee, Eung-Ho;Park, Hee-Juhn
    • Korean Journal of Plant Resources
    • /
    • v.21 no.1
    • /
    • pp.83-86
    • /
    • 2008
  • Four compounds, luteolin(1), quercetin(2) astragalin(3), rutin(4), were isolated from the methanol extract of the all part of Polytrichum commune. on the basis of chemical and spectroscopic evidence. These compounds have not been isolated from this plant.

Topical or oral treatment of peach flower extract attenuates UV-induced epidermal thickening, matrix metalloproteinase-13 expression and pro-inflammatory cytokine production in hairless mice skin

  • Kwak, Chung Shil;Yang, Jiwon;Shin, Chang-Yup;Chung, Jin Ho
    • Nutrition Research and Practice
    • /
    • v.12 no.1
    • /
    • pp.29-40
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Ultraviolet radiation (UV) is a major cause of skin photoaging. Previous studies reported that ethanol extract (PET) of Prunus persica (L.) Batsch flowers (PPF, peach flowers) and its subfractions, particularly the ethylacetate (PEA) and n-butanol extracts (PBT), have potent antioxidant activity and attenuate the UV-induced matrix metalloproteinase (MMP) expression in human skin cells. In this study, we investigated the protective activity of PPF extract against UV-induced photoaging in a mouse model. MATERIALS/METHODS: Hairless mice were treated with PET or a mixture of PEA and PBT either topically or orally along with UV irradiation. Histological changes and biochemical alterations of mouse skin were examined. Major phenolic compounds in PPF extract were analyzed using an ACQUITY UPLC system. RESULTS: The overall effects of topical and oral treatments with PPF extract on the UV-induced skin responses exhibited similar patterns. In both experiments, the mixture of PEA and PBT significantly inhibited the UV-induced skin and epidermal thickening, while PET inhibited only the UV-induced epidermal thickening. Treatment of PET or the mixture of PEA and PBT significantly inhibited the UV-induced MMP-13 expression, but not type I collagen expression. Topical treatment of the mixture of PEA and PBT with UV irradiation significantly elevated catalase, superoxide dismutase (SOD) and glutathione-peroxidase (GPx) activities in the skin compared to those in the UV irradiated control group, while oral treatment of the mixture of PEA and PBT or PET elevated only catalase and SOD activities, but not GPx. Thirteen phytochemical compounds including 4-O-caffeoylquinic acid, cimicifugic acid E and B, quercetin-3-O-rhamnoside and kaempferol glycoside derivatives were identified in the PPF extract. CONCLUSIONS: These results demonstrate that treatment with PET or the mixture of PEA and PBT, both topically or orally, attenuates UV-induced photoaging via the cooperative interactions of phenolic components having anti-oxidative and collagen-protective activities.

New Azafluorenone Derivative and Antibacterial Activities of Alphonsea cylindrica Barks

  • Talip, Munirah Abdul;Azziz, Saripah Salbiah Syed Abdul;Wong, Chee Fah;Awang, Khalijah;Naz, Humera;Bakri, Yuhanis Mhd;Ahmad, Mohamad Syahrizal;Litaudon, Marc
    • Natural Product Sciences
    • /
    • v.23 no.3
    • /
    • pp.151-156
    • /
    • 2017
  • A phytochemical study of Alphonsea cylindrica King (unreported) has led to the isolation of six alkaloids. The compounds were identified as kinabaline (1; azafluorenone alkaloid), muniranine (2), O-methylmoschatoline (3; oxoaporphine alkaloid), lysicamine (4), atherospermidine (5) and N-methylouregidione (6; 4, 5-dioxoaporphine alkaloid). The structures of the isolated compounds were determined based on the spectroscopic techniques and by comparison with data reported in the literature. Alkaloid 2 was isolated as a new derivative of azafluorenone while alkaloids 1, 3 - 6 were isolated for the first time from Alphonsea species. In addition, alkaloid 3 and 4 showed inhibition zone against Staphylococcus aureus, Pseudomonas aeruginosa and Bacillus cereus in disc diffusion test. The minimum inhibition concentration (MIC) values of lysicamine (4) against S. aureus, B. cereus and P. aeruginosa were found to be smaller than O-methylmoschatoline (3). Therefore, the reported antibacterial activity showed the potential of this plant as natural antibacterial agent and supported the documented traditional use of Alphonsea sp. in the treatment of diarrhea and fever.

Peroxynitrite scavengers from Phellinus linteus

  • Jeong, Da-Mi;Jung, Hyun-Ah;Kang, Hye-Sook;Choi, Jae-Sue
    • Natural Product Sciences
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • Peroxynitrite ($(ONOO^-)$ is a cytotoxic species formed from nitric oxide and superoxide anion, which are highly implicated in the pathogenesis of oxidative stress-mediated diseases. The aim of this study was to investigate the scavenging effects of Phellinus linteus on authentic $ONOO^-$, and further phytochemical studies are planned that will attempt to identify the active principles. From the active EtOAc fraction, a mixture of fungisterol and 5-dihydroergosterol (1), a mixture of betulin and 1,2-benzenedicarboxylic acid bis (2-methyl heptyl) ester (2), protocatechualdehyde (3), protocatechuic acid (4), cirsiumaldehyde (5), hispidin (6), caffeic acid (7), phelligridin D (8), uracil (9), gallic acid (10), 2,5-dihydroxybenzoic acid (11), ferulic acid (12), 2,3-dihydroxybenzaldehyde (13), arbutin (14), isoferulic acid (15), guanosine (16), and ellagic acid (17) were isolated, and their structures were characterized based on spectroscopic data. All compounds except 3, 6, 7 and 16 were isolated for the first time from P. linteus. Compounds 3, 4, 6-8, 10-15, and 17 showed potent scavenging activity on $ONOO^-$, with $IC_{50}$ values of $2.06\;{\pm}\;0.10$, $3.45\;{\pm}\;0.57$, $0.71\;{\pm}\;0.05$, $2.78\;{\pm}\;0.36$, $5.42\;{\pm}\;0.26$, $1.13\;{\pm}\;0.02$, $1.82\;{\pm}\;0.17$, $0.91\;{\pm}\;0.19$, $1.59\;{\pm}\;0.09$, $1.88\;{\pm}\;0.07$, $1.22\;{\pm}\;0.37$, and $2.01\;{\pm}\;0.02\;{\mu}M$, respectively, as compared to the positive control, DL-penicillamine, with an $IC_{50}$ value of $5.04\;{\pm}\;0.06\;{\mu}M$.

Insights into the in vitro germicidal activities of Acalypha indica

  • Rahman, Md. Shahedur;Hossain, Riad;Saikot, Forhad Karim;Rahman, Shaikh Mizanur;Saha, Subbroto Kumar;Hong, Jongki;Kim, Ki-Hyun
    • Analytical Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.26-31
    • /
    • 2017
  • Background and purpose: This study was carried out to learn more about the potential prophylactic or antibacterial activity of the plant Acalypha indica against selective pathogenic bacteria. Experimental: The test organisms were Sarcina lutea IFO 3232, Bacillus subtilis IFO 3026, Pseudomonas denitrificans, Escherichia coli IFO 3007, Klebsiella pneumoniae ATTC 10031, Xanthomonas campestris IAM 1671, and Proteus vulgaris. Leaf, stem, and bud powder of Acalypha indica were dissolved in various solvents, and the extracts were tested for antimicrobial activity through the disc diffusion method. GC-MS profiling was performed to characterize active chemical compounds in the essential oil of Acalypha indica. Results: The ethanol extract showed the highest activity against all bacteria, while the petroleum ether extract yielded the highest zone of inhibition against Proteus vulgaris ($11.83{\pm}1.75mm$). The minimum inhibitory concentration (MIC) of the ethyl acetate extract against Bacillus subtilis was 16 µg/mL. Phytochemical screening by GC-MS revealed a total of 12 bioactive compounds. Conclusion: Extracts of Acalypha indica may be useful in formulating and synthesizing new antibacterial drugs.

Inhibition of Klebsiella pneumoniae ATCC 13883 Cells by Hexane Extract of Halimeda discoidea (Decaisne) and the Identification of Its Potential Bioactive Compounds

  • Supardy, Nor Afifah;Ibrahim, Darah;Sulaiman, Shaida Fariza;Zakaria, Nurul Aili
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.872-881
    • /
    • 2012
  • The inhibitory effect of the Klebsiella pneumoniae ATCC 13883 strain caused by the hexane extract of Halimeda discoidea (Nor Afifah et al., 2010) was further evaluated by means of the microscopy view and its growth curves. The morphological changes of the K. pneumoniae ATCC 13883 cells were observed under the scanning electron microscope (SEM) and transmission electron microscope (TEM) after they were treated at minimum inhibitory concentration (MIC; 0.50 mg/ml) (Nor Afifah et al., 2010) for 12, 24, and 36 h. The results showed the severity of the morphological deteriorations experienced by the treated cells. The killing curve assay was performed for 48 h at three different extract concentrations (1/2 MIC, MIC, and 2 MIC). An increase in the extract concentration of up to 2 MIC value did significantly reduce the number of cells by approximately 1.9 $log_{10}$, as compared with the control. Identification of the potential compounds of the extract responsible for the antibacterial activity was carried out through the gas chromatography-mass spectrum (GC-MS) analysis of the active subfraction, and the compound E-15-heptadecenal was identified and suggested as the most potential antibacterial compound of this extract. The subsequent cellular degenerations showed by the data might well explain the inhibitory mechanisms of the suggested antibacterial compound. All of these inhibitory effects have further proven the presence of an antibacterial compound within H. discoidea that can inhibit the growth of K. pneumoniae ATCC 13883.