• Title/Summary/Keyword: physics simulation

Search Result 1,117, Processing Time 0.026 seconds

Magnetic Shielding Effect on Halbach Cylinder used in Magnetic Refrigerators

  • Baek, Un Bong;Lee, Jong Suk;Yu, Seong-Cho;Ryu, Kwon-Sang
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.349-352
    • /
    • 2014
  • The system for producing magnetic field constitutes an important component of magnetic refrigerator. Many researchers have directed significant effort to increase the magnetic field intensity, because the magnetocaloric effect at the Curie temperature increases with the power of 2/3 of the magnetic field. In this study, we report the simulation of the magnetic field intensity at polar axis of a Halbach cylinder (HC) by i) changing the length and thickness of the HC, ii) having with or without gap of the HC, and iii) surrounding the HC with a soft magnet shell, acting as a shielding. We simulated the field distribution of a HC with a finite size. Furthermore, the detailed numerical results of the magnetic field distribution and its dependence on shielding are presented in this study.

Quantum Simulation Study on Performance Optimization of GaSb/InAs nanowire Tunneling FET

  • Hur, Ji-Hyun;Jeon, Sanghun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.630-634
    • /
    • 2016
  • We report the computer aided design results for a GaSb/InAs broken-gap gate all around nanowire tunneling FET (TFET). In designing, the semi-empirical tight-binding (TB) method using $sp3d5s^*$ is used as band structure model to produce the bulk properties. The calculated band structure is cooperated with open boundary conditions (OBCs) and a three-dimensional $Schr{\ddot{o}}dinger$-Poisson solver to execute quantum transport simulators. We find an device configuration for the operation voltage of 0.3 V which exhibit desired low sub-threshold swing (< 60 mV/dec) by adopting receded gate configuration while maintaining the high current characteristic ($I_{ON}$ > $100 {\mu}A/{\mu}m$) that broken-gap TFETs normally have.

Application of Pulse Pile-Up Correction Spectrum to the Library Least-Squares Method (펄스 중첩 보정 스펙트럼의 라이브러리 최소자승법에의 이용)

  • Lee, Sang-Hoon
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.4
    • /
    • pp.173-179
    • /
    • 2006
  • The Monte Carlo simulation code CEARPPU has been developed and updated to provide pulse pile-up correction spectra for high counting rate cases. For neutron activation analysis, CEARPPU correction spectra were used in library least-squares method to give better isotopic activity results than the convention library least-squares fitting with uncorrected spectra.

Mass inflow history of satellite systems around a dwarf galaxy

  • Chun, Kyungwon;Shin, Jihye;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.63.4-64
    • /
    • 2016
  • We aim to investigate inflow history of matters that fall into the satellite systems around a dwarf galaxy in Lambda-Cold Dark Matter model. Each satellite system has unique properties because all satellite systems have different mass inflow history by environments and/or the events such as cosmic reionization and merging with other halos. To trace mass inflow history of the satellite systems, we perform three different cosmological zoom simulations whose galaxy mass is ${\sim}10^{10}M_{sun}$. Each initial zoom simulation covers a cubic box of $1Mpc/h^3$ with 17 million particles. Particle mass for dark matter (DM) and gas components is $M_{DM}=4.1{\times}10^3M_{sun}$ and $M_{gas}=7.9{\times}10^2M_{sun}$, respectively. Thus, each satellite system is resolved with more than hundreds - thousands of particles. We analyze the influence of the gravitational interaction with host galaxy, baryonic matter inflow by various cooling mechanisms, and merging events with other halos on the mass inflow history of satellite systems.

  • PDF

Radiation dose plan system based on particle simulation and volume rendering (입자 시뮬레이터와 볼륨 렌더링 기반의 방사선조사계획 시스템)

  • Kim, A-Mi;Kim, Seung-Wan;Song, Ju-Whan;Gwun, Ou-Bong;Kim, Chong-Yeal;Hong, Seung-Woo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.12 no.3
    • /
    • pp.21-26
    • /
    • 2006
  • 악성 종양은 현대인을 괴롭히는 대표적인 질병의 하나로 이를 치료하는데 흔히 이용되는 것이 방사선치료이다. 방사선 치료에서는 종양세포만을 찾아 방사선을 조사하는 것이 무엇보다 중요하다. 본 논문에서는 입자 시뮬레이터 Geant4와 볼륨렌더링을 이용하여 이러한 것을 가능하게 하는 방사선조사계획시스템을 제안하고 시스템의 논리적 구조와 구현 시 고려할 사항에 대하여 알아본다. 본 시스템은 Geant4에 있는 다양한 물리(physics)이론을 적용하여 방사선의 물성을 다양하고 정확하게 시뮬레이션 하고, 시뮬레이션으로 구한 방사선량 분포를 볼륨렌더링으로 생성한 영상과 함께 표시하여 사용자가 방사선 치료 계획을 용이하게 세울 수 있도록 한다.

  • PDF

Control of Shock-Wave/Bound-Layer Interactions by Bleed

  • Shih, T.I.P.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.24-32
    • /
    • 2008
  • Bleeding away a part of the boundary layer next to the wall is an effective method for controlling boundary-layer distortions from incident shock waves or curvature in geometry. When the boundary-layer flow is supersonic, the physics of bleeding with and without an incident shock wave is more complicated than just the removal of lower momentum fluid next to the wall. This paper reviews CFD studies of shock-wave/boundary-layer interactions on a flat plate with bleed into a plenum through a single hole, three holes in tandem, and four rows of staggered holes in which the simulation resolves not just the flow above the plate, but also the flow through each bleed hole and the plenum. The focus is on understanding the nature of the bleed process.

Numerical Study on a Sliding Bubble During Nucleate Boiling

  • Son, Gihun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.931-940
    • /
    • 2001
  • A numerical method for simulating bubble motion during nucleate boiling is presented. The vapor-liquid interface is captured by a level set method which can easily handle breaking and merging of the interface and can calculate an interfacial curvature more accurately than the VOF method using a step function. The level set method is modified to include the effects of phase change at the interface and contact angle at the wall as well as to achieve mass conservation during the whole calculation procedure. Also, a simplified model to predict the heat flux in a thin liquid microlayer is developed. The method is applied for simulation of a sliding bubble on a vertical surface to further understand the physics of partial boiling. Based on the computed results, the effects of contact angle, wall superheat and phase change on a sliding bubble are quantified.

  • PDF

A Study on the Manufacturing Technology Development of High Purity NanoPowder (고순도 나노분말 제조기술 개발에 관한 연구)

  • 박영문;차용훈;성백섭;윤길하
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1178-1181
    • /
    • 2003
  • Nanotechnology is the creation and utilization of materials, devices, and systems through the control of matter on the nanometer-length scale, that is, at the level of atoms, molecules, and supramolecular structures. The essence of nanotechnology is the ability to work at these levels to generate larger structures with fundamentally new molecular organization. These nanostructures, made with building blocks understood from first principles, are the smallest human-made objects, and they exhibit novel physical, chemical, and biological properties and phenomena. The aim of nanotechnology is to learn to exploit these properties and efficiently manufacture and employ the structures. Control of matter on the nanoscale already plays an important role in scientific disciplines as diverse as physics, chemistry, materials science, biology, medicine, engineering, and computer simulation. This paper describes the superprecision nano separator to productive particle size of nano powder. this separator system is very important in the industrial area for other high technology parts.

  • PDF

A Study on the Development of the Superprecision Nano Separator (초정밀 나노 분급기 개발에 관한 연구)

  • 성백섭;윤길하;차용훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.27-32
    • /
    • 2003
  • Nanotechnology is the creation and utilization of materials, devices, and systems through the control of matter on the nanometer-length scale, that is, at the level of atoms, molecules, and supramolecular structures. The essence of nanotechnology is the ability to work at these levels to generate larger structures with fundamentally new molecular organization. These nanostructures, made with building blocks understood from first principles, are the smallest human-made objects, and they exhibit novel physical, chemical, and biological properties and phenomena. The aim of nanotechnology is to loam to exploit these properties and efficiently manufacture and employ the structures. Control of matter on the nanoscale already plays an important role in scientific disciplines as diverse as physics, chemistry, materials science, biology, medicine, engineering, and computer simulation. This paper describes the superprecision nano separator to productive particle size of nano powder. this separator system is very important in the industrial area for other high technology parts.

  • PDF

Security performance analysis of SIMO relay systems over Composite Fading Channels

  • Sun, Jiangfeng;Bie, Hongxia;Li, Xingwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2649-2669
    • /
    • 2020
  • In this paper, we analyze the secrecy performance of single-input multiple-output (SIMO) relay systems over κ-μ shadowed fading channels. Based on considering relay model employing decode-and-forward (DF) protocol, two security evaluation metrics, namely, secure outage probability (SOP) and probability of strictly positive secrecy capacity (SPSC) are studied, for which closed-form analytical expressions are derived. In addition, Monte Carlo results prove the validity of the theoretical derivation. The simulation results confirm that the factors that enhance the security include large ratio of (μD, μE), (mD, mE), (LD, LE) and small ratio of (kD, kE) under the high signal-to-noise ratio regime.