• Title/Summary/Keyword: physical-mechanical

Search Result 3,388, Processing Time 0.029 seconds

Evaluation of Engineering Characteristics and Utilization of Nonmetal Mining Waste Powder as Geo-Materials (비금속 광산 폐분의 공학적 특성 및 활용 가능성 분석)

  • Cho, Jinwoo;Lee, Yongsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.12
    • /
    • pp.71-78
    • /
    • 2011
  • This paper aims to present the evaluation of engineering characteristics and reusing possibility of waste powders produced in dolomite and limestone nonmetal mining by physical and mechanical experiments on compaction, uniaxial compressive strength, permeability, chemical composition, and so on. Granite soil, 2 types of limestone waste powder, and 1 type of dolomite waste powder were used for main materials, and cement and bentonite were used for admixed materials in this experiments. The findings based on the experimental results are the severe difference of chemical composition of the dolomite & limestone waste powder and the crushed rock waste powder, and the outstanding of engineering characteristics of the dolomite waste powder with high content of MgO compared with the limestone waste powder. The engineering properties on compaction, uniaxial compressive strength, and permeability are enhanced with increase of admixed ratio of waste powder on granite soil. From the experimental results, it can be suggested that the dolomite waste powder admixed with in-situ granite soil is useful as geo-materials with considering of distribution costs.

Fluoro-illite/polypropylene Composite Fiber Formation and Their Thermal and Mechanical Properties (불소화 일라이트/폴리프로필렌 복합섬유 형성 및 열 및 기계적 특성)

  • Jeong, Euigyung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.467-472
    • /
    • 2011
  • This study investigated illite/polypropylene (PP) composite filament formation via melt-spinning and evaluated their physical properties to prepare functional fibers using natural materials. When composite filaments were formed, the composite filaments exhibited smaller fiber diameters compared to that of neat PP filament because of the lubricant effect of illite induced by its layered structure. Moreover, fluorination effect increased interfacial affinity and dispersion in the polymer, resulting in smaller diameter of fluorinated illite/PP composite filament, which was 2/3 of the neat PP filament diameter. Addition of raw and fluorinated illite improved thermal stability of illite/PP composite filament. Raw illite/PP composite filament cannot be used for a practical application, because it broke during drawing process, whereas the fluorinated illite/PP composite filament can be used for a practical application, because it exhibited similar tensile strength of the neat PP filament and 50% increased modulus. Even with improved illite/PP interfacial affinity and illite dispersion in the polymer, illite/PP composite filament formed microcomposite, because non-expandable illite had strongly bound layers, resulting in only a little illite exfoliation and PP intercalation into illite.

Preparation and Release Properties of Acetaminophen Imprinted Functional Starch based Biomaterials for Transdermal Drug Delivery (경피약물전달을 위한 아세트아미노펜 각인 기능성 전분 기반 바이오 소재 제조 및 방출 특성)

  • Kim, Han-Seong;Kim, Kyeong-Jung;Lee, Si-Yeon;Cho, Eun-Bi;Kang, Hyun-Wook;Yoon, Soon-Do
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.299-304
    • /
    • 2021
  • This study focuses on the preparation of acetaminophen (AP) imprinted functional biomaterials for a transdermal drug delivery using mung bean starch (MBS), polyvinyl alcohol (PVA), sodium benzoate (S) as a crosslinking agent, glycerol (GL) as a plasticizer, and melanin (MEL) as a photothermal agent. The prepared AP imprinted biomaterials were characterized using FE-SEM and their physical properties were evaluated. The photothermal effect and AP release property for functional biomaterials were examined with the irradiation of near infrared (NIR) laser (1.5 W/cm2). When the NIR laser was irradiated on functional biomaterials with/without the addition of MEL, the temperature of MEL added biomaterial increased from 25 ℃ to 41 ℃, whereas the biomaterial without MEL increased from 25 ℃ to 28 ℃. Results indicate that there is the photothermal effect of prepared biomaterial with the addition of MEL. Based on the results, AP release properties were evaluated using standard buffer solutions and artificial skin. It was found that AP release rates of MEL added AP loaded biomaterials were 1.2 times faster than those of MEL non-added AP loaded biomaterials when irradiating with NIR laser. We envision that the developed functional biomaterials can be utilized for an acute pain-killing treatment.

Indoor and Outdoor Levels of Particulate Matter with a Focus on I/O Ratio Observations: Based on Literature Review in Various Environments and Observations at Two Elementary Schools in Busan and Pyeongtaek, South Korea (실내 외 농도 비(I/O ratio)에 기반한 주변환경과 실내 미세먼지 농도분포 특성: 선행연구 리뷰와 여름철 부산과 평택 초등학교에서의 측정 결과를 중심으로)

  • Kang, Jiwon;An, ChanJung;Choi, Wonsik
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1691-1710
    • /
    • 2020
  • We measured PM2.5 and PM10 (particulate matter less than 2.5 ㎛ and 10 ㎛ in diameter, respectively) simultaneously at 16 locations around an elementary school and classrooms in Busan and Pyeongtaek, South Korea. In this study, we compared the results of this field intensive with those in the literature (144 cases of 30 studies), focusing on I/O (Indoor/Outdoor) ratios. We also reviewed the results of previous studies, categorizing them into related sub-categories for indoor-activities, seasons, building-uses, and the surrounding environment. We conclude that indoor PM10 is affected more by indoor-sources (e.g., physical activities) than PM2.5 in the absence of combustion sources like smoking and cooking. Additionally, PM10 and PM2.5 likely have different indoor-outdoor infiltration efficiencies. Conclusively, PM10 in classrooms can be more sensitively affected by both indoor activities and ambient concentrations, and mechanical ventilation can be more efficient in reducing PM concentrations than natural ventilation.

The Influence of Fitting Parameters on the Soil-Water Characteristics Curve in Stability Analysis of an Unsaturated Natural Slope (불포화 자연사면의 안정해석시 흙-함수특성곡선 맞춤계수의 영향)

  • Kim, Jae-Hong;Yoo, Yong-Jae;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.165-178
    • /
    • 2021
  • The influence of Soil-Water Characteristic Curve (SWCC) fitting parameters for an unsaturated natural slope was evaluated through seepage and slope stability analysis as a function of rainfall. Soil samples were collected from the study area in Jirisan National Park and the physical and mechanical characteristics of unsaturated soil layers were measured in laboratory tests. The saturation depth was calculated via seepage analysis by changing fitting parameters α, the parameter related to the Air Entry Value (AEV) and n, the parameter related to the slope of the SWCC in the range of natural conditions. Slope stability analysis using the limit equilibrium method considered the calculated depth of saturation. Results from seepage analysis for various rainfall conditions indicate the saturation depth in the soil layer suddenly increased as the fitting parameter α decreased; the saturation time for the entire soil layer also decreased. Slope stability analysis considering the calculated depth of saturation shows that the slope safety factor rapidly decreased as the fitting parameter α decreased, whereas the variation in slope safety factor was very small when n increased. Hence, fitting parameter α has a large effect on saturation depth during rainfall and therefore on slope stability, whereas slope stability is relatively unaffected by the fitting parameter n.

Slope Stability for Bridge Access Road on Sedimentary Rocks using Geological Cross Sections (지질단면을 이용한 교량 접속도로 퇴적암 비탈면의 안정성 검토 연구)

  • Ihm, Myeong Hyeok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.507-512
    • /
    • 2022
  • The subjects of the study are the sedimentary rock slope of the Mesozoic Gyeongsang Supergroup, which has a high risk of failure. The rocks of the slope shall be sandstone, siltstone and dacite, and discontinuities shall develop beddings, shear joints, extension joints, and dacite dyke boundary planes. The type and scale of failure varies depending on the type of rock and the strike/dip of the discontinuities, but the planar failure prevails. Based on the face-mapping data, SMR, physical and mechanical testing of rocks, the critical equilibrium analysis, all representative sections required a countermeasure method because the acceptable safety factor during dry and rainy seasons were far below Fs=1.5 and Fs=1.2. After applying the countermeasure method, both the dry and wet conditions of the slope exceeded the allowable safety factor. In particular, the face-mapping data of the slope-face, the geological cross-sections of several representative sections perpendicular to the slope-face, and the critical equilibrium analysis and the presentation of countermeasure methods that have been reviewed based on them are expected to be reasonable tools for the slope stability.

A Review on Development of PPO-based Anion Exchange Membranes (PPO 기반 음이온 교환막 소재 개발 동향)

  • An, Seong Jin;Kim, Ki Jung;Yu, Somi;Ryu, Gun Young;Chi, Won Seok
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.371-383
    • /
    • 2021
  • Anion exchange membranes have been used for water electrolysis, which can produce hydrogen, and fuel cells, which can generate electrical energy using hydrogen fuel. Anion exchange membranes operate based on hydroxide ion (OH-) conduction under alkaline conditions. However, since the anion exchange membrane shows relatively low ion conductivity and alkaline stability, there is still a limit to its commercialization in water electrolysis and fuel cells. To address these issues, it is important to develop novel anion exchange membrane materials by rationally designing a polymer structure. In particular, the polymer structure and synthetic method need to be controlled. By doing so, for polymers, the physical properties, ionic conductivity, and alkaline stability can be maintained. Among many anion exchange membranes, poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) is commercially available and easily accessible. In addition, the PPO has relatively high mechanical and chemical stability compared to other polymers. In this review, we introduce the recent development strategy and characteristics of PPO-based polymer materials used in anion exchange membranes.

Petrological Characteristics and Nondestructive Deterioration Assessments for Foundation Stones of the Sebyeonggwan Hall in Tongyeong, Korea (통영 세병관 초석의 암석학적 특성 및 비파괴 손상평가)

  • Han, Doo Roo;Kim, Sung Han;Park, Seok Tae;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.199-212
    • /
    • 2021
  • The Sebyeonggwan Hall (National Treasure No. 305) is located on the Naval Headquarter of Three Provinces in Tongyeong, and it has partly undergone with several rebuilding, remodeling, repairing and restorations since it's the first establishment in Joseon Dynasty (AD 1605) of ancient Korea. This study focuses on 50 foundation stones that comprise the Sebyeonggwan. These stones are made of six rock types and currently have various shapes of the surface damages. As the foundation stones, the dominant rock type was dacitic lapilli tuffs, and provenance-based interpretation was performed to supply alternative stones for conservation. Most of the provenance rocks for foundation stones showed highly homogeneity with their corresponding stones of petrography, mineralogy and magnetic susceptibility. According to surface deterioration assessments, the most serious damages of the stones were blistering and scaling. The deterioration mechanism was identified through the analysis of inorganic contaminants, and the primary reason is considered salt weathering caused by sea breeze and other combined circumstances. Based on the mechanical durability of the stones, there was no foundation stone that required the replacement of its members attributed to the degradation of the rock properties, but conservation treatment is considered necessary to delay superficial damage. The foundation stones are characterized by a combined outcome of multiple petrological factors that caused physical damage to surfaces and internal defects. Therefore, it's required to diagnosis and monitoring the Sebyeonggwan regularly for long-term preservation.

Characteristics of Particleboards Made from Three-months-old Domestics Bamboo (Phyllostachys nigra var henonis Stapf) (3개월생 분죽을 이용한 대나무 파티클보드의 특성)

  • Lee, Hwa Hyoung;Han, Ki Sun;Kim, Gwan Eui
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.11-17
    • /
    • 2002
  • This study was performed to determine the characteristics of particleboard made from three-months-old bamboo, (Phyllostachys nigra var henonis Stapf) grown in Damyang district, Korea. Total 60 particleboards were manufactured with 1% of liquid wax emulsion using urea-formaldehyde resin content 9%,11% and 13%, respectively. The particle boards consisted of three layers, in which face layer had the same proportion of a weight 25% of the particleboard each. And the core layer had a weight 50% of the board. The core layer and face layer had the particle dimension passing 6 mesh (3.35 mm), 12 mesh (1.70 mm), respectively. The study was carried out to determine the effect of the growing time of 3 months and 3 years on particleboard properties. The physical and mechanical properties of boards were measured and compared to the Korean standard (KS) requirements of particle boards. The results were as follows; 1. The longer the growing time, the higher the density of bamboo. Density of the upper part of bamboo showed higher than that of lower part. 2. Density and moisture content of the two particle boards did not show significant differences. Three-months-old bamboo particleboard gave higher thickness swelling than three-years-old bamboo particleboard. Bamboo particleboard passed the thickness swelling test of KS. 3. The static bending and internal bond strength of three-months-old bamboo particleboard were higher than those of three-years-old bamboo. Increase of resin contents in bamboo particleboard increased bending and internal bond strength, proportionally. Strength properties of bamboo particle board were above KS. 4. Formaldehyde emission of all the bamboo particleboards satisfied E2 level (5.0 mg/L) of KS F 3104.

Hot Pressing Technology for Improvement of Density Profile and Sound Absorption Capability of Particleboard (파티클보드의 밀도경사와 흡음성 개선을 위한 열압기술)

  • Park, Hee Jun;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.25-33
    • /
    • 2002
  • Improvement of density profile and sound absorption capability of particleboard was attempted. Three types of hot pressing methods examined ; flat-platen pressing method (A-type pressing), hot pressing in forming box (B-type pressing), and hot pressing set up jagged caul in forming box (C-type pressing). The raw materials were larch(Larix leptolepis (S, et. Z.) Gorden) shavings, phenol formaldehyde resin, and the particleboard perforated with stair type. The physical and mechanical properties such as specific gravity, bending strength (MOR), internal bonding strength (IB) and sound absorption coefficients were examined. The results are summarized as follows : 1) The MOR and internal bonding strength of the board pressed in forming box were higher than those of flat-platen pressed board. 2) The minimum density to average density ratio in thickness direction which pressed in forming box showed about 923%, in the case of 35 mm commercial particleboard and 50 mm flat-platen pressed board, its values showed about 66.4% and 865% respectively. 3) Sound absorption coefficients of the particleboard perforated with stair type were higher than those of flat-plated pressed board and commercial particleboard.