Acknowledgement
이 논문은 2019년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(Grant No. NRF- 2019R1I1A3A01061508)에 의해 수행하였음.
References
- F. F. Azhar, A. Olad, and A. Mirmohseni, Development of novel hybrid nanocomposites based on natural biodegradable polymer-montmorillonite/polyaniline: Preparation and characterization, Polym. Bull., 71(7), 1591-1610 (2014). https://doi.org/10.1007/s00289-014-1143-0
- H. Y. Tak, Y. H. Yun, C. M. Lee, and S. D. Yoon, Sulindac imprinted mungbean starch/PVA biomaterial films as a transdermal drug delivery patch, Carbohydr. Polym., 208, 261-268 (2019). https://doi.org/10.1016/j.carbpol.2018.12.076
- S. H. Hsu, K. C. Hung, and C. E. Chen, Biodegradable polymer scaffolds, J. Mater. Chem. B, 4(47), 7493-7505 (2016). https://doi.org/10.1039/C6TB02176J
- S. Banerjee, P. Chattopadhyay, A. Ghosh, P. Datta, and V. Veer, Aspect of adhesives in transdermal drug delivery systems, Int. J. Adhes. Adhes., 50, 70-84 (2014). https://doi.org/10.1016/j.ijadhadh.2014.01.001
- B. V. Bochove and D. W. Grijpma, Photo-crosslinked synthetic biodegradable polymer networks for biomedical applications, J. Biomater. Sci-Polym. Ed., 30(2), 77-106 (2019). https://doi.org/10.1080/09205063.2018.1553105
- K. Hamad, M. Kaseem, Y. G. Ko, and F. Deri, Biodegradable polymer blends and composites: An overview, Polym. Sci. Ser. A, 56(6), 812-829 (2014). https://doi.org/10.1134/S0965545X14060054
- L. S. Nair and C. T. Laurencin, Biodegradable polymers as biomaterials, Prog. Polym. Sci., 32(8-9), 762-798 (2007). https://doi.org/10.1016/j.progpolymsci.2007.05.017
- H. Almasi, B. Ghanbarzadeh, and A. A. Entezami, Physicochemical properties of starch-CMC-nanoclay biodegradable films, Int. J. Biol. Macromol., 46(1), 1-5 (2010). https://doi.org/10.1016/j.ijbiomac.2009.10.001
- D. R. Lu, C. M. Xiao, and S. J. Xu, Starch-based completely biodegradable polymer materials, Express Polym. Lett., 3(6), 366-375 (2009). https://doi.org/10.3144/expresspolymlett.2009.46
- N. Reddy and Y. Yang, Citric acid cross-linking of starch films, Food Chem., 118(3), 702-711 (2010). https://doi.org/10.1016/j.foodchem.2009.05.050
- C. Wu, P. Jiang, W. Li, H. Guo, J. Wang, J. Chen, M. R. Prausnitz, and Z. L. Wang, Self-powered iontophoretic transdermal drug delivery system driven and regulated by biomechanical motions, Adv. Funct. Mater., 30(3), 1907378 (2020). https://doi.org/10.1002/adfm.201907378
- M. Azmana, S. Mahmood, A. R. Hilles, U. K. Mandal, K. A. S. Al-Japairai, and S. Raman, Transdermal drug delivery system through polymeric microneedle: A recent update, J. Drug Deliv. Sci. Technol., 101877 (2020).
- X. Zhou, Y. Hao, L. Yuan, S. Pradhan, K. Shrestha, O. Pradhan, H. Liu, and W. Li, Nano-formulations for transdermal drug delivery: A review, Chin. Chem. Lett., 29(12), 1713-1724 (2018). https://doi.org/10.1016/j.cclet.2018.10.037
- H. S. Kim, K. J. Kim, M. W. Lee, S. Y. Lee, Y. H. Yun, W. G. Shim, and S. D. Yoon, Preparation and release properties of arbutin imprinted inulin/polyvinyl alcohol biomaterials, Int. J. Biol. Macromol., 161, 763-770 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.105
- Y. Li and S. M. Chen, The electrochemical properties of acetaminophen on bare glassy carbon electrode, Int. J. Electrochem. Sci., 7(3), 2175-2187 (2012).
- E. B. Lim, T. A. Vy, and S. W. Lee, Comparative release kinetics of small drugs (ibuprofen and acetaminophen) from multifunctional mesoporous silica nanoparticles, J. Mater. Chem. B, 8(10), 2096-2106 (2020). https://doi.org/10.1039/c9tb02494h
- S. Abid, T. Hussain, A. Nazir, A. Zahir, and N. Khenoussi, Acetaminophen loaded nanofibers as a potential contact layer for pain management in Burn wounds, Mater. Res. Express, 5(8), 085017 (2018). https://doi.org/10.1088/2053-1591/aad2eb
- M. Kim, H. S. Kim, M. A. Kim, H. Ryu, H. J. Jeong, and C. M. Lee, Thermohydrogel containing melanin for photothermal cancer therapy, Macromol. Biosci., 17(5), (2017).
- Y. Liu, K. Ai, J. Liu, M. Deng, Y. He, and L. Lu, Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy, Adv. Mater., 25(9), 1353-1359 (2013). https://doi.org/10.1002/adma.201204683
- S. Roy and J. W. Rhim, Preparation of carrageenan-based functional nanocomposite films incorporated with melanin nanoparticles, Colloid Surf. B-Biointerfaces, 176, 317-324 (2019). https://doi.org/10.1016/j.colsurfb.2019.01.023
- H. S. Kim, Y. H. Yun, W. G. Shim, and S. D. Yoon, Preparation and evaluation of functional allopurinol imprinted starch based biomaterials for transdermal drug delivery, Int. J. Biol. Macromol., 175, 217-228 (2021). https://doi.org/10.1016/j.ijbiomac.2021.02.004
- S. Sajjan, G. Kulkarni, V. Yaligara, K. Lee, and T. B. Karegoudar, Purification and physiochemical characterization of melanin pigment from Klebsiella sp. GSK, J. Microbiol. Biotechnol., 20(11), 1513-1520 (2010). https://doi.org/10.4014/jmb.1002.02006
- J. Stainsack, A. S. Mangrich, C. M. Maia, V. G. Machado, J. C. dos Santos, and S. Nakagaki, Spectroscopic investigation of hard and soft metal binding sites in synthetic melanin, Inorg. Chim. Acta, 356, 243-248 (2003). https://doi.org/10.1016/S0020-1693(03)00474-2
- A. S. El-Shahawy, S. M. Ahmed, and N. K. Sayed, INDO/SCF-CI calculations and structural spectroscopic studies of some complexes of 4-hydroxyacetanilide, Spectrochim. Acta A-Mol. Biomol. Spectrosc., 66(1), 143-152 (2007). https://doi.org/10.1016/j.saa.2006.02.034
- I. G. Binev, P. Vassileva-Boyadjieva, and Y. I. Binev, Experimental and ab initio MO studies on the IR spectra and structure of 4-hydroxyacetanilide (paracetamol), its oxyanion and dianion, J. Mol. Struct., 447(3), 235-246 (1998). https://doi.org/10.1016/S0022-2860(98)00302-0