• Title/Summary/Keyword: physical weathering

Search Result 205, Processing Time 0.025 seconds

Classifications by Materials and Physical Characteristics for Neolithic Pottery from Jungsandong Site in Yeongjong Island, Korea (영종도 중산동 신석기시대 토기의 재료학적 분류와 물리적 특성)

  • Kim, Ran Hee;Lee, Chan Hee;Shin, Sook Chung
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.4
    • /
    • pp.122-147
    • /
    • 2017
  • The Jungsandong sites are distributed across quartz and mica schist formations in Precambrian, and weathering layers include large amounts of non-plastic minerals such as mica, quartz, felspar, amphibole, chlorite and so on, which form the ground of the site. Neolithic pottery from Jungsandong exhibits various brown colors, and black core is developed along the inner part for some samples, and sharp comb-pattern and hand pressure marks can be observed. Their non-plastic particles have various composition, size distribution, sorting and roundness, so they are classified into four types by their characteristic mineral compositions. I-type (feldspar pottery) is including feldspar as the pain component or mica and quartz. II-type (mica pottery) is the combination of chloritized mica, talc, tremolite and diopside. III-type (talc pottery) is with a very small amount of quartz and mica. IV-type (asbestos pottery) is containing tremolite and a very small amount of talc. The inner and outer colors of Jungsandong pottery are somewhat heterogeneous. I-type pottery group shows differences in red and yellow degree, depending on the content of feldspar, and is similar to III-type pottery. II-type is similar to IV-type, because its red degree is somewhat high. The soil of the site is higher in red and yellow degree than pottery from it. The magnetic susceptibility has very wide range of 0.088 to 7.360(${\times}10^{-3}$ SI unit), but is differentiated according to minerals, main components in each type. The ranges of bulk density and absorption ratio of pottery seem to be 1.6 to 1.7 and 13.1 to 26.0%, respectively. Each type of pottery shows distinct section difference, as porosity and absorption ratio increase in the order as follows: I-type (organic matter fixed sample) < III-type and IV-type < I-type < II-type (including IV-type of IJP-15). The reason is that differences in physical property occur according to kind and size of non-plastic particles. Although Jungsandong pottery consists of mixtures of various materials, the site pottery has a geological condition on which all mineral composition of Jungsandong pottery can be provided. There, it is thought that raw materials can be supplied from weathered zone of quartz and mica schist, around the site. However, different constituent minerals, size and rock fragments are shown, suggesting the possibility that there can be more raw material pits. Thus, it is estimated that there may be difference in clay and weathering degree.

Study on the Geochemical Weathering Process of Sandstones and Mudstones in Pohang Basin at CO2 Storage Condition (지중저장 조건에서 초임계CO2에 의한 포항분지 사암과 이암의 지화학적 풍화반응 연구)

  • Park, Jinyoung;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.46 no.3
    • /
    • pp.221-234
    • /
    • 2013
  • Laboratory experiments for the reaction with supercritical $CO_2$ under the $CO_2$ sequestration condition were performed to investigate the mineralogical and geochemical weathering process of the sandstones and mudstones in the Pohang basin. To simulate the supercritical $CO_2$-rock-groundwater reaction, rock samples used in the experiment were pulverized and the high pressurized cell (200 ml of capacity) was filled with 100 ml of groundwater and 30 g of powdered rock samples. The void space of the high pressurized cell was saturated with the supercritical $CO_2$ and maintained at 100 bar and $50^{\circ}C$ for 60 days. The changes of mineralogical and geochemical properties of rocks were measured by using XRD (X-Ray Diffractometer) and BET (Brunauer-Emmett-Teller). Concentrations of dissolved cations in groundwater were also measured for 60 days of the supercritical $CO_2$-rock-groundwater reaction. Results of XRD analyses indicated that the proportion of plagioclase and K-feldspar in the sandstone decreased and the proportion of illite, pyrite and smectite increased during the reaction. In the case of mudstone, the proportion of illite and kaolinite and cabonate-fluorapatite increased during the reaction. Concentration of $Ca^{2+}$ and $Na^+$ dissolved in groundwater increased during the reaction, suggesting that calcite and feldspars of the sandstone and mudstone would be significantly dissolved when it contacts with supercritical $CO_2$ and groundwater at $CO_2$ sequestration sites in Pohang basin. The average specific surface area of sandstone and mudstone using BET analysis increased from $27.3m^2/g$ and $19.6m^2/g$ to $28.6m^2/g$ and $26.6m^2/g$, respectively, and the average size of micro scale void spaces for the sandstone and mudstone decreased over 60 days reaction, resulting in the increase of micro pore spaces of rocks by the dissolution. Results suggested that the injection of supercritical $CO_2$ in Pohang basin would affect the physical property change of rocks and also $CO_2$ storage capacity in Pohang basin.

Study on Material Characteristics and Conservation Methods for Tracksite of Cretaceous Dinosaurs and Pterosaurs of Jeongchon area in Jinju, Korea (진주 정촌면 백악기 공룡·익룡발자국 화석산지의 재질특성 및 보존 방안 연구)

  • Ji Hyun Yoo;Yu Bin Ahn;Myoung Nam Kim;Myeong Seong Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.697-714
    • /
    • 2023
  • The Tracksite of Cretaceous Dinosaurs and Pterosaurs in Jeongchon, Jinju was discovered in late 2017 during the construction of the Ppuri industry complex. This site is a natural heritage site with a high paleontological value, as it preserves fossils of various types of dinosaurs, pterosaurs, and animal traces at a dense concentration. In this study, we surveyed that physical weathering such as joint, crack, scaling, exfoliation, and fragmentation occurred through field research in the fossil site, and conducted basic research on conservation science to reduce the damage. To this end, among the eight levels identified after excavation, the rocks of Level 3, which yielded a large number of theropod footprint fossils, and Level 4, which yielded pterosaur footprint fossils, were analyzed for material characteristics and evaluation of the effectiveness of consolidation and adhesion. This results showed that the rocks in the Level 3 stratum were dark gray siltstone and the rocks in the Level 4 stratum were dark gray shale, which contained a large amount of calcite and were composed of quartz, plagioclase, mica, alkali feldspar, and other clay minerals, which are likely to be damaged by rainfall under external conditions. As a result of conducting an artificial weathering experiment by dividing the probationary sample into four groups: untreated, consolidation treatment, anti-swelling treatment, and adhesive treatment, the consolidation and the swelling inhibitor showed an effect immediately after treatment, but did not show a blocking effect under a freezing-thawing environment. The adhesive showed that the adhesive effect was maintained even under freezing-thawing conditions. In order to preserve the fossil sites at Jeongchon in the future, in addition to temporary measures to block the inflow of moisture, practical measures such as the construction of protective facilities should be prepared.

Study on the Material and Deterioration Characteristics of the Stone Seated Buddha Triad and Stone Standing Buddha in Bijung-ri, Cheongju, Korea (청주 비중리 석조여래삼존상 및 석조여래입상의 재질특성과 손상특성 연구)

  • Yoo, Ji Hyun;Choie, Myoungju;Lee, Myeong Seong;Kim, Yuri
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.778-790
    • /
    • 2021
  • The Stone Seated Buddha Triad and Stone Standing Buddha in Bijung-ri are state-designated heritage (treasure) statues having the Buddha style of the Goryeo dynasty from the 6th century. Conservation scientific investigations were conducted to understand the preservation status of these stone Buddha statues and to establish a conservation plan. The Stone Seated Buddha Triad and Stone Standing Buddha are composed of fine-medium grained biotite granite, which is considered to be of the same origin owing to their low magnetic susceptibility distribution of less than 0.2 (×10-3 SI unit) and similar mineral characteristics. The Stone Seated Buddha Triad has highly homogenous mineral composition and particle size, whole-rock magnetic susceptibility, and geochemical characteristics very similar to those of the nearby outcrop. It was confirmed that a combination of physical, chemical, and biological factors affects the Stone Buddha statues. In particular, both the Stone Seated Buddha Triad and Stone Standing Buddha tend to be chipped off from the front and cracked and scaled from the back. The Stone Standing Buddha located outdoors experiences granularity decomposition and black algae formation, which accelerate the weathering under unfavorable conservation environments. The result of non-destructive physical property diagnosis using ultrasonic velocity showed that both the Stone Seated Buddha Triad and Stone Standing Buddha have been completely weathered (CW), indicating very poor physical properties.

Factors affecting particle breakage of calcareous soil retrieved from South China Sea

  • Wang, Xinzhi;Shan, Huagang;Wu, Yang;Meng, Qingshan;Zhu, Changqi
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.173-185
    • /
    • 2020
  • Calcareous soil is originated from marine biogenic sediments and weathering of carbonate rocks. The formation history for calcareous sediment includes complex physical, biological and chemical processes. It is preferably selected as the major fill materials for hydraulic reclamation and artificial island construction. Calcareous sands possess inter pores and complex shape are liable to be damaged at normal working stress level due to its fragile nature. Thus, the engineering properties of calcareous soil are greatly affected by its high compressibility and crushability. A series of triaxial shear tests were performed on calcareous sands derived from South China Sea under different test conditions. The effects of confining pressure, particle size, grading, compactness, drainage condition, and water content on the total amount of particle breakage for calcareous soil were symmetrically investigated. The test results showed that the crushing extent of calcareous sand with full gradation was smaller than that a single particle group under the same test condition. Large grains are cushioned by surrounding small particles and such micro-structure reduces the probability of breakage for well-graded sands. The increasing tendency of particle crushing for calcareous sand with a rise in confining pressure and compactness is confirmed. It is also evident that a rise in water content enhances the amount of particle breakage for calcareous sand. However, varying tendency of particle breakage with grain size is still controversial and requires further examination.

Assessment of the Anchor Head System Embedded in the Ground Surface (지표면에 근입한 앵커두부처리 시스템의 적용성 평가)

  • Min, Kyoung-Nam;Bae, Woo-Seok;Ahn, Kwang-Kuk;Jeong, Ku-Sic
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.49-58
    • /
    • 2012
  • Anchor heads a recommonly exposed to surface weathering processes that cause physical damage by vibration and external forces. This study presents a new method of anchor-head installation that uses near-surface embedding based on analyses of concrete block failure. ABAQUS 3D numerical modeling performed to compare this method with the standard technique and to analyze the distribution of displacement and the stress pattern. In addition, application of the method to a real-world case was tested by in-situ measurements. The results show a maximum vertical stress of 9.73 MPa and vertical displacement of 1.34 mm. Field tests indicated that displacement of a concrete block was 3 to 4 times greater than that of an embedded bearing plate.

Deterioration Mechanism Interpretation and Surface Contaminant Analysis of the Five-Storied Stone Pagoda in Tapriri, Uiseong (의성 탑리리 오층석탑의 표면오염물 분석 및 손상메커니즘 해석)

  • Lee, Mi Hye;Chun, Yu Gun;Lee, Myeong Seong
    • Economic and Environmental Geology
    • /
    • v.46 no.5
    • /
    • pp.445-453
    • /
    • 2013
  • The Uiseong Tapriri Five-Storied Stone Pagoda (National Treasure No. 77) is typical stone cultural heritage in Unified Silla Dynasty, Korea. The pagoda has been occurred black, brown discoloration and microcrack, exfoliation, granularity decomposition with white discoloration because of continuous weathering. As the results of analysis for the contaminants, chemical weatherings are generated that black contaminant by manganese oxide, brown contaminant by iron oxide, white contaminants by gypsum and taranakite. And physical weatherings, such as microcrack, exfoliation, are occurred by salt(gypsum) crystallization. Therefore, these need to remove the contaminants according to the conservation treatment manual, and regular monitoring using P-XRF to preserve long-term the Five-Storied Stone Pagoda at Tapri-ri, Uiseong.

Application of Oil Spill Model to the South Sea of Korea (누유확산 모델의 남해안 적용)

  • Hong Keyyong;Lee Moonjin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.1
    • /
    • pp.56-65
    • /
    • 1998
  • An oil spill model, Green Sea Ranger(GSR) based on trajectory and fate modeling of spilt oil behavior is introduced. The various physical models on weathering processes are reviewed and those adopted by GSR are described. A database for currents, which is necessary for the real-time simulation of oil spill, is generated on the south sea of Korea. The real-time prediction of tidal currents in the South Sea of Korea is carried out. Four major constituents (M₂, S₂, K₁, O₁ tide) are employed in the prediction, and those angular speeds and phases are determined from the astronomical arguments. The harmonic constants of the constituents are computed by solving shallow-water tide equations. The GSR has user-freiendly GUI and flexible framework which makes it easy to expand the database for sea environments in Korean coastal waters. The GSR is validated by the simulation of O-Sung oil spill caused by a grounded oil tanker in coastal sea near Maemol-do. The simulated trajectory is compared with observed one and it is shown that the GSR gives reasonable estimation on spilt oil bahavior.

  • PDF

Basic Characteristics and Application of Modern Dancheong Pigment Jangdanyuksaek (Incarnadine) (현대 단청용 장단육색의 기본 특성 및 사용 기준 연구)

  • Kim, Eun Ji;Chung, Kwang Yong
    • Journal of Conservation Science
    • /
    • v.31 no.4
    • /
    • pp.457-476
    • /
    • 2015
  • This study is expected to present instructions and analysis of Modern Dancheong pigments by its physical characteristics. Search pigments currently used and experiments proper mixing ratio of Jangdanyuksaek(Incarnadine). Samples are made by based on presented a mixture ratio which is less exfoliation, cracks and color change. And put into accelerated weathering test and ultraviolet ray degradation test. As a result in case of Jidang($TiO_2$) Rutile type is superior in discoloration and durability. Rutile type makes color difference remarkably because of oil absorption difference while mixing with Jangdan. Water paints which are used as a alternative present yellowness which means water paints lack in durability. whiting should be taken carefully as it has high brightness after degradation.

Long Term Monitoring of Deterioration Condition for the Rock-carved Buddha Triad in Seosan, Korea (서산 용현리 마애여래삼존상의 장기 모니터링과 훼손상태 변화)

  • Chun, Yu Gun;Lee, Jae Man;Lee, Mi Hye;Park, Sung Mi;Lee, Sun Myung;Lee, Myeong Seong
    • Journal of Conservation Science
    • /
    • v.30 no.4
    • /
    • pp.439-446
    • /
    • 2014
  • We carried out monitoring of deterioration condition for the Rock-carved Buddha Triad in Seosan after dismantlement of protective facilities and conservation treatment. As the results of ultrasonic velocity measurement, physical properties of rock were evaluated to maintain similar the past. Result of digital image analysis, white discoloration was reoccured after four years of conservation treatments. And biodeterioration of unknown in the past was generated left side on the Rock-carved Buddha. Phenomenon of biodeterioration on the surface rocks was estimated by variation of sunshine and water contents according to topography condition.