• 제목/요약/키워드: physical shapes

검색결과 344건 처리시간 0.022초

보현산 천문대 소행성 관측 연구 (KEEP-North : Kirkwood Excitation and Exile Patrol of the Northern Sky)

  • Kim, Myung-Jin;Choi, Young-Jun;Moon, Hong-Kyu
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.61.3-62
    • /
    • 2016
  • An asteroid family is a group of asteroidal objects in the proper orbital element space (a, e, and i), considered to have been produced by a disruption of a large parent body through a catastrophic collision. Family members usually have similar surface properties such as spectral taxonomy types, colors, and visible geometric albedo with a same dynamical age. Therefore an asteroid family could be called as a natural Solar System laboratory and is also regarded as a powerful tool to investigate space weathering and non-gravitational phenomena such as the Yarkovsky/YORP effects. We carry out time series photometric observations for a number of asteroid families to obtain their physical properties, including sizes, shapes, rotational periods, spin axes, colors, and H-G parameters based on nearly round-the-clock observations, using several 0.5-2 meter class telescopes in the Northern hemisphere, including BOAO 1.8 m, LOAO 1.0 m, SOAO 0.6 m facilities in KASI, McDonald Observatory 2.1 m instrument, NARIT 2.4 m and TUG 1.0 m telescopes. This study is expected to find, for the first time, some important clues on the collisional history in our Solar System and the mechanisms where the family members are being transported from the resonance regions in the Main-belt to the near Earth space.

  • PDF

Aerodynamic stability for square cylinder with various corner cuts

  • Choi, Chang-Koon;Kwon, Dae-Kun
    • Wind and Structures
    • /
    • 제2권3호
    • /
    • pp.173-187
    • /
    • 1999
  • The flow around a structure has been an important subject in wind engineering research. There are various kinds of unstable aerodynamic phenomena with regard to a bluff body. In order to understand the physical mechanism of aerodynamic and aeroelastic instability of a bluff body, the relations between the flow around structures and the motion of body with various section shapes should be investigated. Based on a series of wind tunnel tests, this paper addresses the aerodynamic stability of square cylinder with various corner cuts and attack angles in the uniform flow. The test results show that the models with corner cut produced generally better behaviour for the galloping phenomenon than the original section. However, the corner cut method can not prevent the occurrence of the vortex-induced vibration(VIV). It is also shown that as the attack angle changes, the optimum size of corner cut changes also. This means that any one specific size of corner cut which shows the best aerodynamic behaviour throughout all the cases of attack angles does not exist. This paper presents an intensive study on obtaining the optimum size of corner cut for the stabilization of aerodynamic behaviour of cylinders.

합성(合成)고무 보강제(補强劑) Silica의 화학처리(化學處理)에 관(關)한 연구(硏究)(I) -Silica의 MDI 처리(處理)- (Studies on the Chemical Treatment of Silica for Synthetic Rubber Reinforcement(I) - Silica Treatment by MDI-)

  • 진제용;김홍선;최세영
    • Elastomers and Composites
    • /
    • 제30권1호
    • /
    • pp.20-31
    • /
    • 1995
  • The purpose of this study is to investigate the reinforcement of inorganic filler silica, treated by MDI about SBR vulcanizate. The characteristics of vulcanization, physical properties, surface properties and dynamic properties were investigated after mixing those silica with SBR and unmodified silica with SBR. In this experiment only the quantity of silica was variable. In the vulcanization characteristics tested by rheometer, S-series showed the fastest scorch $time(t_{10})$ and optimum cure $time(t_{90})$. And in test or tensile characteristics hardness, tensile strength, 100%, 300% modulus and elongation were all appeared in the order of M>S-series. The characteristic bonding of urea between unmodified silica and MDI could be confirmed in IR spectrum. The shapes of silicas treated chemically were observed by SEM. And the dispersion of the filler in the SBR composite was uniform. In the dynamic characteristics by the RDS, the order of elastic modulus G' values was as follows : M>S-series, and also the order of damping values was as follows : M>S-series.

  • PDF

Vibration based damage identification of concrete arch dams by finite element model updating

  • Turker, Temel;Bayraktar, Alemdar;Sevim, Baris
    • Computers and Concrete
    • /
    • 제13권2호
    • /
    • pp.209-220
    • /
    • 2014
  • Vibration based damage detection is very popular in the civil engineering area. Especially, special structures like dams, long-span bridges and high-rise buildings, need continues monitoring in terms of mechanical properties of material, static and dynamic behavior. It has been stated in the International Commission on Large Dams that more than half of the large concrete dams were constructed more than 50 years ago and the old dams have subjected to repeating loads such as earthquake, overflow, blast, etc.,. So, some unexpected failures may occur and catastrophic damages may be taken place because of theloss of strength, stiffness and other physical properties of concrete. Therefore, these dams need repairs provided with global damage evaluation in order to preserve structural integrity. The paper aims to show the effectiveness of the model updating method for global damage detection on a laboratory arch dam model. Ambient vibration test is used in order to determine the experimental dynamic characteristics. The initial finite element model is updated according to the experimentally determined natural frequencies and mode shapes. The web thickness is selected as updating parameter in the damage evaluation. It is observed from the study that the damage case is revealed with high accuracy and a good match is attained between the estimated and the real damage cases by model updating method.

수백 kV급 공심형 펄스 변압기 개발 (Development of several hundred kV Air Core pulse transformer)

  • 김성철;박성수;김상희;허훈;남상훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.2132-2135
    • /
    • 2005
  • Cylindrical type air core pulse transformers capable of passing high voltage and energy pulse waveforms with high efficiency and low distortion require a much more delicate design balance of physical dimensions and electrical parameters than iron or ferrite core units. The structure of an air core high voltage pulse transformer is relatively simple, but considerable attention is needed to prevent breakdown between transformer windings. Since the thickness of the windings in spiral type is on the order of sub-millimeter, field enhancement at the edge of the windings is very high. It is, therefore, important to find proper electrical insulation Parameter to make the system compact. Several shapes of the winding are considered for air core pulse transformer development. In this paper, we are described design procedure, parameters measure and experiment results of air core type HV pulse transformer.

  • PDF

An Experimental Study on the Ultrasonic Machining Characteristics of Engineering Ceramics

  • Kang Ik Soo;Kim Jeong Suk;Seo Yong Wie;Kim Jeon Ha
    • Journal of Mechanical Science and Technology
    • /
    • 제20권2호
    • /
    • pp.227-233
    • /
    • 2006
  • Engineering ceramics have many unique characteristics both in mechanical and physical properties such as high temperature hardness, high thermal, chemical and electrical resistance. However, its machinability is very poor in conventional machining due to its high hardness and severe tool wear. In the current experimental study, alumina $(Al_2O_3)$ was ultrasonically machined using SiC abrasives under various machining conditions to investigate the material removal rate and surface quality of the machined samples. Under the applied amplitude of 0.02mm, 27kHz frequency, three slurry ratios of 1:1, 1:3 and 1:5 with different tool shapes and applied static pressure levels, the machining was conducted. Using the mesh number of 240 abrasive, slurry ratio of 1:1 and static pressure of $2.5kg/cm^2$, maximum material removal rate of $18.97mm^3/min$ was achieved. With mesh number of 600 SiC abrasives and static pressure of $3.0kg/cm^2$, best surface roughness of $0.76{\mu}m$ Ra was obtained.

Morphological, Physical Characterization of Poly(acrylic acid) Nanogel Prepared by Electron Beam Irradiation

  • Park, Jong-Seok;Choi, Jong-Bae;Gwon, Hui-Jeong;Lim, Youn-Mook;Jeong, Sung-In;Shin, Young-Min;Kang, Phil-Hyun;Nho, Young-Chang
    • 방사선산업학회지
    • /
    • 제8권1호
    • /
    • pp.29-34
    • /
    • 2014
  • Nanogels are internally cross-linked particles of sub-micrometer size made of hydrophilic polymers and are considered a distinct type of macromolecules, compared with linear and branched polymers or macroscopic gels. In this study, we studied a method of radiation induced synthesis of nanogels, which allows us to obtain tailored intra-molecularly crosslinked macromolecules of independently chosen molecular weight and dimensions. Thus, we report the possibility of applying the prepared nanogels using poly(acrylic acid) through electron beam irradiation for potential application as biomaterials. The nanogels were characterized by scanning electron microscopy (SEM). In addition, the size and zeta-potential of nanogels were measured by a particle size analyzer (PSA). The nanogels were prepared at an approximate size of 180 nm at 100 kGy and were spherical in shapes. The size of the nanogels decreased with increasing irradiation doses, and the absolute value of zeta potential increased with increasing irradiation doses.

Components of wind -tunnel analysis using force balance test data

  • Ho, T.C. Eric;Jeong, Un Yong;Case, Peter
    • Wind and Structures
    • /
    • 제18권4호
    • /
    • pp.347-373
    • /
    • 2014
  • Since its development in the early 1980's the force balance technique has become a standard method in the efficient determination of structural loads and responses. Its usefulness lies in the simplicity of the physical model, the relatively short records required from the wind tunnel testing and its versatility in the use of the data for different sets of dynamic properties. Its major advantage has been the ability to provide results in a timely manner, assisting the structural engineer to fine-tune their building at an early stage of the structural development. The analysis of the wind tunnel data has evolved from the simple un-coupled system to sophisticated methods that include the correction for non-linear mode shapes, the handling of complex geometry and the handling of simultaneous measurements on multiple force balances for a building group. This paper will review some of the components in the force balance data analysis both in historical perspective and in its current advancement. The basic formulation of the force balance methodology in both frequency and time domains will be presented. This includes all coupling effects and allows the determination of the resultant quantities such as resultant accelerations, as well as various load effects that generally were not considered in earlier force balance analyses. Using a building model test carried out in the wind tunnel as an example case study, the effects of various simplifications and omissions are discussed.

Neutronics modeling of bubbles in bubbly flow regime in boiling water reactors

  • Turkmen, Mehmet;Tiftikci, Ali
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1241-1250
    • /
    • 2019
  • This study mainly focused on the neutronics modeling of bubbles in bubbly flow in boiling water reactors. The bubble, ring and homogenous models were used for radial void fraction distribution. Effect of the bubble and ring models on the infinite multiplication factor and two-group flux distribution was investigated by comparing with the homogenous model. Square pitch unit cell geometry was used in the calculations. In the bubble model, spherical and non-spherical bubbles at random positions, sizes and shapes were produced by Monte Carlo method. The results show that there are significant differences among the proposed models from the viewpoint of physical interaction mechanism. For the fully-developed bubbly flow, $k_{inf}$ is overestimated in the ring model by about $720{\pm}6pcm$ with respect to homogeneous model whereas underestimated in the bubble model by about $-65{\pm}9pcm$ with a standard deviation of 15 pcm. In addition, the ring model shows that the coolant must be separated into regions to properly represent the radial void distribution. Deviations in flux distributions principally occur in certain regions, such as corners. As a result, the bubble model in modeling the void fraction can be used in nuclear engineering calculations.

Vibration analysis of defected and pristine triangular single-layer graphene nanosheets

  • Mirakhory, M.;Khatibi, M.M.;Sadeghzadeh, S.
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1327-1337
    • /
    • 2018
  • This paper investigates the vibration behavior of pristine and defected triangular graphene sheets; which has recently attracted the attention of researchers and compare these two types in natural frequencies and sensitivity. Here, the molecular dynamics method has been employed to establish a virtual laboratory for this purpose. After measuring the different parameters obtained by the molecular dynamics approach, these data have been analyzed by using the frequency domain decomposition (FDD) method, and the dominant frequencies and mode shapes of the system have been extracted. By analyzing the vibration behaviors of pristine triangular graphene sheets in four cases (right angle of 45-90-45 configuration, right angle of 60-90-30 configuration, equilateral triangle and isosceles triangle), it has been demonstrated that the natural frequencies of these sheets are higher than the natural frequency of a square sheet, with the same number of atoms, by a minimum of 7.6% and maximum of 26.6%. Therefore, for increasing the resonance range of sensors based on 2D materials, nonrectangular structures, and especially the triangular structure, can be considered as viable candidates. Although the pristine and defective equilateral triangular sheets have the highest values of resonance, the sensitivity of defective (45,90,45) triangular sheet is more than other configurations and then, defective (45,90,45) sheet is the worst choice for sensor applications.