DOI QR코드

DOI QR Code

Vibration analysis of defected and pristine triangular single-layer graphene nanosheets

  • Mirakhory, M. (Modal Analysis Lab., School of Mechanical Engineering, Semnan University) ;
  • Khatibi, M.M. (Modal Analysis Lab., School of Mechanical Engineering, Semnan University) ;
  • Sadeghzadeh, S. (Smart Micro/Nano Electro Mechanical Systems Lab (MNEMS), School of New Technologies, Iran University of Science and Technology)
  • Received : 2018.05.07
  • Accepted : 2018.07.15
  • Published : 2018.11.30

Abstract

This paper investigates the vibration behavior of pristine and defected triangular graphene sheets; which has recently attracted the attention of researchers and compare these two types in natural frequencies and sensitivity. Here, the molecular dynamics method has been employed to establish a virtual laboratory for this purpose. After measuring the different parameters obtained by the molecular dynamics approach, these data have been analyzed by using the frequency domain decomposition (FDD) method, and the dominant frequencies and mode shapes of the system have been extracted. By analyzing the vibration behaviors of pristine triangular graphene sheets in four cases (right angle of 45-90-45 configuration, right angle of 60-90-30 configuration, equilateral triangle and isosceles triangle), it has been demonstrated that the natural frequencies of these sheets are higher than the natural frequency of a square sheet, with the same number of atoms, by a minimum of 7.6% and maximum of 26.6%. Therefore, for increasing the resonance range of sensors based on 2D materials, nonrectangular structures, and especially the triangular structure, can be considered as viable candidates. Although the pristine and defective equilateral triangular sheets have the highest values of resonance, the sensitivity of defective (45,90,45) triangular sheet is more than other configurations and then, defective (45,90,45) sheet is the worst choice for sensor applications.

Keywords

References

  1. A.S. Tsiamaki, S.K. Georgantzinos, N.K. Anifantis, Monolayer graphene resonators for mass detection: a structural mechanics feasibility study, Sensor Actuator A Phys. 217 (2014) 29-38. https://doi.org/10.1016/j.sna.2014.06.015
  2. C. Lee, et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (5887) (2008) 385-388. https://doi.org/10.1126/science.1157996
  3. S. Sahmani, M.M. Aghdam, T. Rabczuk, Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nanoplates reinforced with GPLs, Compos. Struct. 198 (2018) 51-62.
  4. L. Yang, et al., Quasiparticle energies and band gaps in graphene nanoribbons, Phys. Rev. Lett. 99 (18) (2007) 186801. https://doi.org/10.1103/PhysRevLett.99.186801
  5. C. Zhang, W. Kang, J. Wang, Thermal conductance of one-dimensional materials calculated with typical lattice models, Phys. Rev. E 94 (5) (2016) 052131.
  6. B. Arash, J.-W. Jiang, T. Rabczuk, A review on nanomechanical resonators and their applications in sensors and molecular transportation, Appl. Phys. Rev. 2 (2) (2015) 021301. https://doi.org/10.1063/1.4916728
  7. B. Arash, Q. Wang, W.H. Duan, Detection of gas atoms via vibration of graphenes, Phys. Lett. A 375 (24) (2011) 2411-2415. https://doi.org/10.1016/j.physleta.2011.05.009
  8. S.K. Jalali, M.H. Naei, N.M. Pugno, Graphene-based resonant sensors for detection of ultra-fine nanoparticles: molecular dynamics and nonlocal elasticity investigations, Nano 10 (02) (2014) 1550024.
  9. P.A.A. Laura, et al., A note on vibrating circular plates carrying concentrated masses, Mech. Res. Commun. 11 (6) (1984) 397-400. https://doi.org/10.1016/0093-6413(84)90050-8
  10. S. Sadeghzadeh, Equivalent mechanical boundary conditions for single layer graphene sheets, Micro & Nano Lett. 11 (5) (2016) 248-252. https://doi.org/10.1049/mnl.2015.0427
  11. A. Sakhaee-Pour, M.T. Ahmadian, A. Vafai, Application of Single-layered Graphene Sheets as Mass Sensors and Atomistic Dust Detectors, (2007), pp. 99-104 4305X.
  12. F. Bonaccorso, et al., Graphene photonics and optoelectronics, Nat. Photon. 4 (9) (2010) 611-622. https://doi.org/10.1038/nphoton.2010.186
  13. S.K. Singh, M. Neek-Amal, F.M. Peeters, Electronic properties of graphene nanoflakes: energy gap, permanent dipole, termination effect, and Raman spectroscopy, J. Chem. Phys. 140 (7) (2014) 074304. https://doi.org/10.1063/1.4865414
  14. H. Mousavi, J. Khodadadi, Flake electrical conductivity of few-layer graphene, Sci. World J. 2014 (2014) 6.
  15. J. Akola, H.P. Heiskanen, M. Manninen, Edge-dependent selection rules in magic triangular graphene flakes, Phys. Rev. B 77 (19) (2008) 193410. https://doi.org/10.1103/PhysRevB.77.193410
  16. M. Brack, et al., On the role of classical orbits in mesoscopic electronic systems, Z. Physik D Atoms, Mol. Clust. 40 (1) (1997) 276-281. https://doi.org/10.1007/s004600050209
  17. M. Manninen, H.P. Heiskanen, J. Akola, Electronic shell and supershell structure in graphene flakes, Eur. Phys. J. D 52 (1) (2009) 143-146. https://doi.org/10.1140/epjd/e2008-00282-0
  18. W.-L. Ma, S.-S. Li, Electric-field-induced spin depolarization in graphene quantum dots, Phys. Rev. B 86 (4) (2012) 045449. https://doi.org/10.1103/PhysRevB.86.045449
  19. H.P. Heiskanen, M. Manninen, J. Akola, Electronic structure of triangular, hexagonal and round graphene flakes near the Fermi level, N. J. Phys. 10 (10) (2008) 103015. https://doi.org/10.1088/1367-2630/10/10/103015
  20. S.M. Reimann, M. Manninen, Electronic structure of quantum dots, Rev. Mod. Phys. 74 (4) (2002) 1283-1342. https://doi.org/10.1103/RevModPhys.74.1283
  21. S.Y. Zhou, et al., First direct observation of Dirac fermions in graphite, Nat. Phys. 2 (9) (2006) 595-599. https://doi.org/10.1038/nphys393
  22. K. Nakada, et al., Edge state in graphene ribbons: nanometer size effect and edge shape dependence, Phys. Rev. B 54 (24) (1996) 17954-17961. https://doi.org/10.1103/PhysRevB.54.17954
  23. S. Okada, Energetics of nanoscale graphene ribbons: edge geometries and electronic structures, Phys. Rev. B 77 (4) (2008) 041408.
  24. Z. Li, et al., How graphene is cut upon oxidation? J. Am. Chem. Soc. 131 (18) (2009) 6320-6321. https://doi.org/10.1021/ja8094729
  25. T. Gokus, et al., Making graphene luminescent by oxygen plasma treatment, ACS Nano 3 (12) (2009) 3963-3968. https://doi.org/10.1021/nn9012753
  26. N.A. Kumar, et al., Graphene and molybdenum disulfide hybrids: synthesis and applications, Mater. Today 18 (5) (2015) 286-298. https://doi.org/10.1016/j.mattod.2015.01.016
  27. M. Mohammadi, M. Ghayour, A. Farajpour, Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Compos. B Eng. 45 (1) (2013) 32-42. https://doi.org/10.1016/j.compositesb.2012.09.011
  28. S. Sarrami-Foroushani, M. Azhari, Nonlocal vibration and buckling analysis of single and multi-layered graphene sheets using finite strip method including van der Waals effects, Phys. E Low-dimens. Syst. Nanostruct. 57 (2014) 83-95. https://doi.org/10.1016/j.physe.2013.11.002
  29. H. Ghashochi-Bargh, S. Razavi, A simple analytical model for free vibration of orthotropic and functionally graded rectangular plates, Alexandria Eng. J. (2017), https://doi.org/10.1016/j.aej.2017.02.005.
  30. S.C. Pradhan, J.K. Phadikar, Nonlocal elasticity theory for vibration of nanoplates, J. Sound Vib. 325 (1) (2009) 206-223. https://doi.org/10.1016/j.jsv.2009.03.007
  31. M. Mahinzare, M.M. Barooti, M. Ghadiri, Vibrational Investigation of the Spinning Bi-dimensional Functionally Graded (2-FGM) Micro Plate Subjected to Thermal Load in Thermal Environment, Microsystem Technologies, 2017.
  32. M.H. Shojaeefard, et al., Free Vibration and Critical Angular Velocity of a Rotating Variable Thickness Two-directional FG Circular Microplate, Microsystem Technologies, 2017.
  33. M. Mahinzare, H. Ranjbarpur, M. Ghadiri, Free vibration analysis of a rotary smart two directional functionally graded piezoelectric material in axial symmetry circular nanoplate, Mech. Syst. Signal Process. 100 (2018) 188-207. https://doi.org/10.1016/j.ymssp.2017.07.041
  34. D.J. Gorman, Free vibration analysis of right triangular plates with combinations of clamped-simply supported boundary conditions, J. Sound Vib. 106 (3) (1986) 419-431. https://doi.org/10.1016/0022-460X(86)90189-6
  35. A. Shooshtari, S. Razavi, Vibration analysis of a magnetoelectroelastic rectangular plate based on a higher-order shear deformation theory, Lat. Am. J. Solid. Struct. 13 (2016) 554-572. https://doi.org/10.1590/1679-78251831
  36. C.S. Kim, S.M. Dickinson, The free flexural vibration of right triangular isotropic and orthotropic plates, J. Sound Vib. 141 (2) (1990) 291-311. https://doi.org/10.1016/0022-460X(90)90841-M
  37. M. Korayem, V. Rahneshin, S. Sadeghzadeh, Coarse-grained molecular dynamics simulation of automatic nanomanipulation process: the effect of tip damage on the positioning errors, Comput. Mater. Sci. 60 (2012) 201-211. https://doi.org/10.1016/j.commatsci.2012.03.042
  38. M. Korayem, S. Sadeghzadeh, Dynamics of macro-nano mechanical systems; fixed interfacial multiscale method, Int. J. Nanosci. Nanotechnol. 8 (4) (2012) 227-246.
  39. M. Korayem, S. Sadeghzadeh, V. Rahneshin, A new multiscale methodology for modeling of single and multi-body solid structures, Comput. Mater. Sci. 63 (2012) 1-11. https://doi.org/10.1016/j.commatsci.2012.05.059
  40. A. Sakhaee-Pour, M.T. Ahmadian, R. Naghdabadi, Vibrational analysis of singlelayered graphene sheets, Nanotechnology 19 (8) (2008) 085702. https://doi.org/10.1088/0957-4484/19/8/085702
  41. R. Chowdhury, et al., Transverse vibration of single-layer graphene sheets, J. Phys. Appl. Phys. 44 (20) (2011) 205401. https://doi.org/10.1088/0022-3727/44/20/205401
  42. S. Sadeghzadeh, M.M. Khatibi, Modal identification of single layer graphene nano sheets from ambient responses using frequency domain decomposition, Eur. J. Mech. Solid. 65 (2017) 70-78. https://doi.org/10.1016/j.euromechsol.2017.03.009
  43. Tersoff, J., Erratum: modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B. 41(5): p. 3248-3248.
  44. P.R. Budarapu, et al., Lattice orientation and crack size effect on the mechanical properties of Graphene, Int. J. Fract. 203 (1) (2017) 81-98. https://doi.org/10.1007/s10704-016-0115-9
  45. S. Sadeghzadeh, M.M. Khatibi, Effects of physical boundary conditions on the transverse vibration of single-layer graphene sheets, Appl. Phys. A 122 (9) (2016) 1-11.
  46. H. Wenzel, Ambient vibration monitoring, Encyclopedia of Structural Health Monitoring, John Wiley & Sons, Ltd, 2009.
  47. T.-P. Le, P. Argoul, Modal identification using the frequency-scale domain decomposition technique of ambient vibration responses, J. Sound Vib. 384 (Supplement C) (2016) 325-338. https://doi.org/10.1016/j.jsv.2016.08.019
  48. B. Rune, Z. Lingmi, A. Palle, Modal identification of output-only systems using frequency domain decomposition, Smart Mater. Struct. 10 (3) (2001) 441. https://doi.org/10.1088/0964-1726/10/3/303
  49. A. Brandt, Noise and Vibration Analysis : Signal Analysis and Experimental Procedures, 1 ed., John Wiley & Sons, 2011, p. 438.
  50. D.J. Ewins, Modal Testing: Theory, Practice and Application (Mechanical Engineering Research Studies: Engineering Dynamics Series), Wiley, 2003.
  51. S. Sadeghzadeh, Nanoparticle mass detection by single and multilayer graphene sheets: theory and simulations, Appl. Math. Model. 40 (17-18) (2016) 7862-7879. https://doi.org/10.1016/j.apm.2016.03.051
  52. S. Sadeghzadeh, N. Rezapour, The mechanical design of graphene nanodiodes and nanotransistors: geometry, temperature and strain effects, RSC Adv. 6 (89) (2016) 86324-86333. https://doi.org/10.1039/C6RA18191K
  53. S. Sadeghzadeh, N. Rezapour, A study of thermal conductivity in graphene diodes and transistors with intrinsic defects and subjected to metal impurities, Superlattice. Microst. 100 (Supplement C) (2016) 97-111. https://doi.org/10.1016/j.spmi.2016.09.009
  54. S. Sadeghzadeh, The creation of racks and nanopores creation in various allotropes of boron due to the mechanical loads, Superlattice. Microst. 111 (Supplement C) (2017) 1145-1161. https://doi.org/10.1016/j.spmi.2017.08.019
  55. M.A. Henderson, A surface perspective on self-diffusion in rutile TiO2, Surf. Sci. 419 (2) (1999) 174-187. https://doi.org/10.1016/S0039-6028(98)00778-X
  56. W. Tian, et al., A review on lattice defects in graphene: types, generation, effects and regulation, Micromachines 8 (5) (2017) 163. https://doi.org/10.3390/mi8050163
  57. M.C. Lemme, et al., Etching of graphene devices with a helium ion beam, ACS Nano 3 (9) (2009) 2674-2676. https://doi.org/10.1021/nn900744z
  58. X. Li, et al., Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 324 (5932) (2009) 1312-1314. https://doi.org/10.1126/science.1171245
  59. Y. Liang, Q. Han, S. Huan, The effects of temperature and vacancies on the elastic modulus and strength of graphene sheet, J. Therm. Stresses 38 (8) (2015) 926-933. https://doi.org/10.1080/01495739.2015.1040317
  60. P. Rani, R. Bhandari, DFT study of defects in graphene, International Conference on Advanced Nanomaterials & Emerging Engineering Technologies, (2013).
  61. X. Sun, et al., Effects of vacancy defect on the tensile behavior of graphene, Theor. Appl. Mech. Lett. 4 (5) (2014) 051002. https://doi.org/10.1063/2.1405102
  62. A. Santana, A.M. Popov, E. Bichoutskaia, Stability and dynamics of vacancy in graphene flakes: edge effects, Chem. Phys. Lett. 557 (2013) 80-87. https://doi.org/10.1016/j.cplett.2012.11.077
  63. N. Jing, Q. Xue, C. Ling, M. Shan, T. Zhang, X. Zhou, Z. Jiao, Effect of defects on Young's modulus of graphene sheets: a molecular dynamics simulation, RSC Adv. 2 (24) (2012) 9124-9129, https://doi.org/10.1039/C2RA21228E.

Cited by

  1. Nanoelectromechanical graphene switches for the multi-valued logic systems vol.30, pp.36, 2019, https://doi.org/10.1088/1361-6528/ab260f
  2. Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory vol.33, pp.5, 2019, https://doi.org/10.12989/scs.2019.33.5.717
  3. Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches vol.34, pp.2, 2020, https://doi.org/10.12989/scs.2020.34.2.261
  4. Nanoparticle mass detection by single-layer triangular graphene sheets, the extraordinary geometry for detection of nanoparticles vol.22, pp.6, 2018, https://doi.org/10.1007/s11051-020-04886-8
  5. The effects of van der Waals interactions on the vibrational behavior of single-walled carbon nanotubes using the hammer impact test: a molecular dynamics study vol.22, pp.22, 2018, https://doi.org/10.1039/d0cp00856g
  6. Effect of nitrogen or boron impurities on the mechanical and vibrational properties of graphene nanosheets: a molecular dynamics approach vol.15, pp.14, 2020, https://doi.org/10.1049/mnl.2020.0044
  7. Thermal vibration of circular single-layered MoS2 predicted by the circular Mindlin plate model vol.11, pp.2, 2021, https://doi.org/10.1063/5.0038066
  8. The Fingerprints of Resonant Frequency for Atomic Vacancy Defect Identification in Graphene vol.11, pp.12, 2018, https://doi.org/10.3390/nano11123451