• Title/Summary/Keyword: physical modeling tests

Search Result 76, Processing Time 0.041 seconds

Estimation of the Allowable Bio-shock Fragility Index of Fruits for Optimum Packaging Design (적정 포장설계를 위한 과실의 바이오 허용 충격지수 추정)

  • Kim, Ghi-Seok;Jung, Hyun-Mo;Kim, Ki-Bok;Kim, Man-Soo
    • Journal of Biosystems Engineering
    • /
    • v.32 no.6
    • /
    • pp.416-421
    • /
    • 2007
  • Physical damage to fruits and vegetables caused by shock degrades the value of product in the fresh market. In order to design a product/packaging system to protect the product, the G-factor to the product that causes shock damage needs to be determined. The shock fragility of organisms such as fruits with a concept correspondent to the G-factor of industrial products was calculated and we defined the allowable bio-shock fragility index as the value divided peak acceleration that was generated in safe drop height by standard acceleration of gravity. We did modeling for safe drop hight that would prevent fruits from damage by drop tests and tried to estimate the allowable bio-shock fragility index of pears and apples for optimum packaging design. The bio-shock fragility index of pears was in the range of $0.74{\sim}2.29\;G$, while apples had a slightly higher value than that of pears, of $0.51{\sim}2.98\;G$. This result shows accordance with the general fact that apples have a firmer structure and get less damage from the same impact. Based on this result, it is possible to create an optimum packaging design by providing a damage standard by impact.

Analysis on Deformation and Stiffness of Frame Structure for Fishery using Finite Element Methods (유한 요소법을 이용한 어업용 프레임 구조물의 변형 및 강도 해석)

  • 김태호;류청로;김대안
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.4
    • /
    • pp.307-316
    • /
    • 2002
  • In order to evaluate the deformation and stiffness of frame structure for fishery, composed of unit platforms which made of two concentric high density polyethylene buoys fixed by clamps and belts and rubber hinge components, under wave, the structural analysis for the square type of the structure was carried out by using finite element methods. The accurate physical properties of rubber hinge components determined by material tests were an important parameter to evaluate more reliable structural stability for the structure. The idealization to beam element with equivalent stiffness and rubber element with linearity for rubber hinges was necessary for the modeling of rubber component which has hyper-elastic characteristics. In addition, it was shown that the structural response of the structure under wave was larger in the hogging condition than that of in the still water or in the sagging condition.

Deep learning-based AI constitutive modeling for sandstone and mudstone under cyclic loading conditions

  • Luyuan Wu;Meng Li;Jianwei Zhang;Zifa Wang;Xiaohui Yang;Hanliang Bian
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.49-64
    • /
    • 2024
  • Rocks undergoing repeated loading and unloading over an extended period, such as due to earthquakes, human excavation, and blasting, may result in the gradual accumulation of stress and deformation within the rock mass, eventually reaching an unstable state. In this study, a CNN-CCM is proposed to address the mechanical behavior. The structure and hyperparameters of CNN-CCM include Conv2D layers × 5; Max pooling2D layers × 4; Dense layers × 4; learning rate=0.001; Epoch=50; Batch size=64; Dropout=0.5. Training and validation data for deep learning include 71 rock samples and 122,152 data points. The AI Rock Constitutive Model learned by CNN-CCM can predict strain values(ε1) using Mass (M), Axial stress (σ1), Density (ρ), Cyclic number (N), Confining pressure (σ3), and Young's modulus (E). Five evaluation indicators R2, MAPE, RMSE, MSE, and MAE yield respective values of 0.929, 16.44%, 0.954, 0.913, and 0.542, illustrating good predictive performance and generalization ability of model. Finally, interpreting the AI Rock Constitutive Model using the SHAP explaining method reveals that feature importance follows the order N > M > σ1 > E > ρ > σ3.Positive SHAP values indicate positive effects on predicting strain ε1 for N, M, σ1, and σ3, while negative SHAP values have negative effects. For E, a positive value has a negative effect on predicting strain ε1, consistent with the influence patterns of conventional physical rock constitutive equations. The present study offers a novel approach to the investigation of the mechanical constitutive model of rocks under cyclic loading and unloading conditions.

Partitioning Interwell Tracer Test and Analysis Method for Estimating Oil Pollutants in the Underground (지중 유류오염량 추정을 위한 분배추적자 시험 및 해석방법)

  • Jeong, Chan-Duck;Kim, Yong-Cheol;Myeong, Woo-Ho;Bang, Sung-Su;Lee, Gyu-Sang;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.spc
    • /
    • pp.99-112
    • /
    • 2022
  • From early 2000, many researchers in the groundwater and soil environment remediation project tried to calculate the pollution level and pollution remediation cost and reflect it in the design. In addition, by identifying the movement characteristics of oil pollutants in the underground environment, many researchers tried to derive design factors necessary for pollution purification. However, although the test should be conducted in an area contaminated with oil, the toxicity and risk are too great for testing by deliberately leaking pollutants that are harmful to the human body. And as oil-contaminated areas are promoted by military units such as returned US military bases, there is a limit to access by the general public. In addition, since the indoor simulation test and the field application test have been carried out separately from each other, it was difficult to compare and review various simulation tests Therefore, in this study, PITT (Partitioning Interwell Tracer Test) and analysis methods were specifically presented through actual tests so that field workers could easily use them with the help of the military base and the Korea Rural Community Corporation Soil Environment Restoration Team. However, in order to directly reflect the distribution tracer test results in the pollution remediation design, it is necessary to reduce the analysis errors by comparing the analysis results of the existing soil pollution survey, physical exploration, and numerical modeling. In addition, it is judged to be cautious in the analysis because errors can easily occur due to various factors such as the type of oil at the polluted site, the hydraulic conductivity of the aquifer, and the skill of the researcher.

Model-based Design and Verification of High-lift Control System Using a Performance Analysis Model (성능해석 모델을 활용한 고양력 제어시스템의 모델기반 설계 및 검증)

  • Cho, Hyunjun;Kim, Taeju;Kim, Eunsoo;Kim, Sangbeom;Lee, Joonwon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.2
    • /
    • pp.49-62
    • /
    • 2022
  • The purpose of this paper was to present a model analysis-based design process and verification results for the high-lift control system of aircraft. For this, we used Matlab/Simulink, one of the most widely-used physical modeling tools. The high-lift control system can be divided into three domains. (i.e., Electronic control domain, Hydraulic actuation domain, and Mechanical power transmission domain) Based on this division, we modeled each of the major domains and sub-components, and integrated them to complete the complicated system model. During the development process, each model block was tuned by referring to the results of pre-test and parts acceptance tests. As a result, the entire performance model and the developed system were completely verified, through unit components and system integrated performance tests. Finally, we summarize the process and results applied to the design process of high-lift control system and present future work.

Physical Modeling of Horizontal Force on the Inland Vertical Structure by Tsunami-like Waves (육상의 직립구조물에 미치는 지진 해일에 의한 수평 파력 및 파압에 대한 수리모형실험)

  • Park, Hyongsu;Cox, Daniel;Shin, Sungwon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.363-368
    • /
    • 2017
  • The tsunami flood the coastal cities and damage the land structures. The study on wave pressure and force on land structures is one of the important factors in designing the stability of inland structures. In this study, two - dimensional wave flume tests on the horizontal wave force and pressure of tsunamis on a simplified box-type structure was conducted. Vertical distribution and wave power of horizontal wave pressure over time were measured by pressure sensors and force transducer. Also, those were measured from the different wave breaking types. The vertical distribution of horizontal wave pressure was uniform at the moment when the horizontal wave force to the structure was maximum under the breaking wave condition. A surf similarity parameter was employed in order to figure out the relationship between the maximum horizontal wave force on the structure as a function of various incident wave conditions. As a result, the non - dimensionalized horizontal wave force tends to decrease exponentially as the surf similarity parameter increases.

Heat Transfer Characteristics of the Asphalt pavement by Solar Energy accumulation (열에너지 누적에 따른 아스팔트 포장의 열전달 특성 변화)

  • Lee, Kwan-Ho;Kim, Seong-Kyum;Oh, Seung-Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.490-497
    • /
    • 2020
  • Asphalt pavement accounts for more than 90% of the total pavement in Korea. Pavement is most widely constructed among construction structures. The heat transfer characteristics (Thermophysical Properties) of the asphalt pavement cause the heat island effect in downtown areas. An increasing asphalt surface temperature is one of the major causes of damage to asphalt pavement. This study examined the heat transfer characteristic factors according to solar energy accumulation in an asphalt mixture. The specimens (WC-2 & PA-13, Recycled aggregate used WC-2) used in the experiment were compacted with a Gyratory Compactor. The thermo-physical properties (thermal conductivity, specific heat capacity, thermal diffusivity, and thermal emissivity) and solar energy accumulation were evaluated. The thermal accumulation and HFM tests revealed a 1.2- to 2.0-fold difference. This indicates that the thermal conductivity of the asphalt mixture pavement changes with the accumulation of solar energy. An analysis of the correlation of thermal conductivity according to the surface temperature of the asphalt mixture showed that WC-2 was logarithmic, and PA-13 was linear. Experiments on the heat transfer characteristics of asphalt pavement that can be used for thermal failure modeling of asphalt were conducted.

Variation of Earth Pressure Acting on Cut-and-Cover Tunnel Lining with Settlement of Backfill (되메움토의 침하에 따른 개착식 터널 라이닝에 작용하는 토압의 변화)

  • Bautista F.E.;Park Lee-Keun;Im Jong-Chul;Lee Young-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.27-40
    • /
    • 2006
  • Damage of cut-and-cover tunnel lining can be attributed to physical and mechanical factors. Physical factors include material property, reinforcement corrosion, etc. while mechanical factors include underground water pressure, vehicle loads, etc. This study is limited to the modeling of rigid circular cut and cover tunnel constructed at a depth of $1.0{\sim}1.5D$ in loose sandy ground and subjected to a vibration frequency of 100 Hz. In this study, only damages due to mechanical factors in the form of additional loads were considered. Among the different types of additional, excessive earth pressure acting on the cut-and-cover tunnel lining is considered as one of the major factors that induce deformation and damage of tunnels after the construction is completed. Excessive earth pressure may be attributed to insufficient compaction, consolidation due to self-weight of backfill soil, precipitation and vibration caused by traffic. Laboratory tunnel model tests were performed in order to determine the earth pressure acting on the tunnel lining and to investigate the applicability of existing earth pressure formulas. Based on the difference in the monitored and computed earth pressure, a factor of safety was recommended. Soil deformation mechanism around the tunnel was also presented using the picture analysis method.

Development of Elbow Joint X-ray Examination Aid for Medical Imaging Diagnosis (의료영상 진단을 위한 팔꿉관절 X-선 검사 보조기구 개발)

  • Hyeong-Gyun Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.127-133
    • /
    • 2024
  • The elbow joint is made up of three different bones. X-rays or other radiological exams are commonly used to diagnose elbow injuries or disorders caused by physical activity and external forces. Previous research on the elbow joint reported a new examination method that meets the imaging evaluation criteria in the tilt position by Z-axis elevation of the forearm. Therefore, this study aims to design an optimized instrument and develop an aid applicable to other upper extremity exams. After completing the 2D drawing and 3D modeling design, the final design divided into four parts was fabricated with a 3D printer using ABS plastic and assembled. The developed examination aid consists of a four-stage Z-axis elevation tilt angle function (0°, 5°, 10°, and 15°) and can rotate and fixate 360° in 1-degree increments. It was designed to withstand a maximum equivalent stress of 56.107 Pa and a displacement of 1.6548e-5 mm through structural analysis to address loading issues caused by cumulative frequency of use and physical utilization. In addition to X-ray exams of the elbow joint, the developed aid can be used for shoulder function tests by rotating the humerus and also be applied to MRI and CT exams as it is made of non-metallic materials. It will contribute to the accuracy and efficiency of medical imaging diagnosis through clinical applications of various devices and medical imaging exams in the future.

Pier-Scour Characteristics of the Marine Bridge with Ship Impact Protection - Incheon Bridge Case - (선박충돌방지공이 설치된 해상교량의 교각 세굴 특성 분석 - 인천대교를 대상으로 -)

  • Yeo, Woon-Kwang;Ji, Un;Kim, Chang-Sung;Lim, Jong-Chul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.2
    • /
    • pp.203-211
    • /
    • 2008
  • More recently, the massive marine bridges in a ship passage have been constructed on the sea. Therefore, the ship impact protection for the bridge-piers are installed to consider the possibility of vessel collision danger. Due to the ship impact protection, the pier-scour characteristics are changed in comparison with the condition without the ship impact protection (SIP). In this study, the physical modeling for the Incheon Sea-Crossing Bridge was performed to analyze the pier-scour characteristics with respect to the vessel collision protection. The rigid and movable bed tests were conducted to evaluate the flow pattern, scour depth, and scourhole with and without the ship impact protection. The experimental results for the maximum scour depth is increased 0.24 m in W1 pier at the same location and 2.4 m in W2+3+4 piers due to the SIP installation. Especially, the maximum scour depth in W2+3+4 piers was occurred around the SIP.