• Title/Summary/Keyword: physical interference

Search Result 249, Processing Time 0.025 seconds

Performance Comparison between Interference Minimization and Signal Maximization in Multi-Cell Random Access Networks (다중 셀 랜덤 액세스 네트워크에서 간섭 최소화 기법과 신호 최대화 기법의 성능 비교)

  • Jo, Han-Seong;Jin, Hu;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2014-2021
    • /
    • 2015
  • Opportunistic interference alignment (OIA) has been proposed for multi-cell random access networks (RAN), which minimizes the generating interference to neighboring RANs and yields better performance compared with the conventional techniques. The OIA for RANs considers both physical (PHY) and medium access control (MAC) layers. In this paper, we introduce a protocol of which each user maximizes the transmit signal regardless of the generating interference to neighboring RANs, contrary to the OIA technique. In addition, we compare the performance of the signal-maximization technique with the OIA technique.

Price-based Resource Allocation for Virtualized Cognitive Radio Networks

  • Li, Qun;Xu, Ding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4748-4765
    • /
    • 2016
  • We consider a virtualized cognitive radio (CR) network, where multiple virtual network operators (VNOs) who own different virtual cognitive base stations (VCBSs) share the same physical CBS (PCBS) which is owned by an infrastructure provider (InP), sharing the spectrum with the primary user (PU). The uplink scenario is considered where the secondary users (SUs) transmit to the VCBSs. The PU is protected by constraining the interference power from the SUs. Such constraint is applied by the InP through pricing the interference. A Stackelberg game is formulated to jointly maximize the revenue of the InP and the individual utilities of the VNOs, and then the Stackelberg equilibrium is investigated. Specifically, the optimal interference price and channel allocation for the VNOs to maximize the revenue of the InP and the optimal power allocation for the SUs to maximize the individual utilities of the VNOs are derived. In addition, a low‐complexity ±‐optimal solution is also proposed for obtaining the interference price and channel allocation for the VNOs. Simulations are provided to verify the proposed strategies. It is shown that the proposed strategies are effective in resource allocation and the ±‐optimal strategy achieves practically the same performance as the optimal strategy can achieve. It is also shown that the InP will not benefit from a large interference power limit, and selecting VNOs with higher unit rate utility gain to share the resources of the InP is beneficial to both the InP and the VNOs.

Iterative Approximation of Carrier Sensing Radius in CSMA-based Wireless Ad Hoc Networks (CSMA 기반 무선 애드 혹 네트워크에서 반송파 감지 반경의 반복적 근사 기법)

  • Seol, Jae-Young;Kim, Seong-Lyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12A
    • /
    • pp.1006-1014
    • /
    • 2011
  • Recently, as CSMA technique has been increasingly adopted in various wireless networks, extensive researches to analyze the statistical characteristics of CSMA-based wireless networks have been done. Despite the ongoing efforts, there still remain many difficulties in the analysis because of unexpectable operational behavior of CSMA. Previous literature studying CSMA networks used the concept of the carrier sensing radius to reflect the carrier sensing function. However, since the carrier sensing radius based on the protocol model is not affected by the aggregate interference from other nodes, the derived statistical models cannot avoid approximation errors especially if the network is under high interference. In this paper, we propose an algorithm to derive the carrier sensing radius considering the physical model, where the carrier sensing radius reflecting the aggregate interference is found. For the purpose of this, we analyze the aggregate interference model and the behavior of CSMA function. Based on the analysis, we propose an iterative approximation algorithm for the physical carrier sensing radius. Extensive simulations and results show that the proposed algorithm can contribute to considerably reduce the statistical modeling error of a CSMA network under various channel conditions.

Optimized Cell ID Codes for SSDT Power Control in W-CDMA System (W-CDMA 시스템의 최적의 SSDT 전력 제어용 셀 식별 부호)

  • Young-Joon Song;Bong-Hoe Kim;Hae Chung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.8
    • /
    • pp.804-810
    • /
    • 2002
  • The code division multiple access(CDMA) system capacity is limited by the amount of interference of the system. To reduce the unnecessary interference, this paper proposes optimized cell identification codes for site selection diversity transmission(SSDT) power control in wideband code division multiple access system of third generation partnership project(3GPP). The main objective of SSDT power control is to transmit on the downlink from the primary cell, and thus reducing the interference caused by the multiple transmission. In order to select a primary cell, each cell is assigned a temporary identification(ID) and user equipment(UE) periodically informs a primary cell ID to the connecting cells during soft handover. The non-primary cells selected by UE do not transmit the dedicated physical data channel(DPDCH) to reduce the interference. A major issue with the SSDT technology is the impact of uplink symbol errors on its performance. These errors can corrupt the primary ID code and this may lead to wrong decoding in the base station receivers. The proposed SSDT cell ID codes are designed to minimize the problem and to be easily decoded using simple fast Hadamard transformation(FHT) decoder.

Initial Fixation Power of Human Bone Interference Screw (인간 골 간섭 나사못의 초기 고정력)

  • Kim Jung-Man;Chung Yang-Kook;Kim Yang-Soo;Oh In-Soo;Koh Ihn-Joon
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.1 no.1
    • /
    • pp.26-30
    • /
    • 2002
  • Purpose: To estimate the initial and early phase fixation power of the human bone interference screw in reconstruction of the anterior cruciate ligament with bone-patellar tendon-bone allograft. Materials and Methods: The results of twenty eight knees of reconstruction with bone-patellar tendon-bone allograft were analysed in 6 weeks, 12 weeks, 6 months and one year following operation. Physical examination including Lachman test, flexion rotation drawer test and jerk test were performed. The KT-1000 measurement was performed at the same time. In Lachman test 0 $\~$2mm anterior displacement of the tibia was considered normal. The KT-1000 measurement of normal side was compared with operation side and the difference of the two was recorded. The MRI was checked at final follow-up. Results: All but one knee showed normal in physical examination. The failed case showed proximal migration of the graft due to insufficient number of interference screw fixation in widened tibial tunnel. Conclusions: The human cortical bone interference screw showed sufficient initial and early phase fixation power in reconstruction of the anterior cruciate ligament.

  • PDF

Performance Analysis of the Amplify-and-Forward Scheme under Interference Constraint and Physical Layer Security (물리 계층 보안과 간섭 제약 환경에서 증폭 후 전송 기법의 성능 분석)

  • Pham, Ngoc Son;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.179-187
    • /
    • 2014
  • The underlay protocol is a cognitive radio method in which secondary or cognitive users use the same frequency without affecting the quality of service (QoS) for the primary users. In addition, because of the broadcast characteristics of the wireless environment, some nodes, which are called eavesdropper nodes, want to illegally receive information that is intended for other communication links. Hence, Physical Layer Security is applied considering the achievable secrecy rate (ASR) to prevent this from happening. In this paper, a performance analysis of the amplify-and-forward scheme under an interference constraint and Physical Layer Security is investigated in the cooperative communication mode. In this model, the relays use an amplify-and- forward method to help transmit signals from a source to a destination. The best relay is chosen using an opportunistic relay selection method, which is based on the end-to-end ASR. The system performance is evaluated in terms of the outage probability of the ASR. The lower and upper bounds of this probability, based on the global statistical channel state information (CSI), are derived in closed form. Our simulation results show that the system performance improves when the distances from the relays to the eavesdropper are larger than the distances from the relays to the destination, and the cognitive network is far enough from the primary user.

Interference of Acoustic Signals Due to Internal Waves in Shallow Water

  • Na, Young-Nam;Jurng, Mun-Sub;Taebo Shim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3E
    • /
    • pp.9-20
    • /
    • 1999
  • To investigate the characteristics of internal waves (IWs) and their effects on acoustic wave propagation, a series of sea experiment were performed in the east coast of Donghae city, Korea in 1997 and 1998 where the water depth varies between 130 and 140 m. Thermistor strings were deployed to measure water temperatures simultaneously at 9 depths. CW source signals with the frequencies of 250,670 and 1000 Hz were received by an array of 15 hydrophones. Through the Wavelet transform analysis, the IWs are characterized as having typical periods of 2-17 min and duration of 1-2 hours. The IWs exist in a group of periods rather than in one period. Underwater acoustic signals also show obvious energy peaks in the periods of less than 12 min. Consistency in the periods of the two physical processes implies that acoustic waves react to the IWs through some mechanisms like mode interference and travel time fluctuation. Based on the thermistor string data, mode arriving structures are analyzed. As thermocline depth varies with time, it may cause travel time difference as much as 4-10 ms between mode 1 and 2 over 10 km range. This travel time difference causes interference among modes and thus fluctuation from range-independent stratified ocean structure. In real situations, however, there exist additional spatial variation of IWs. Model simulations with all modes and simple IWs show clear responses of acoustic signals to the IWs, i.e., fluctuations of amplitude and phase.

  • PDF

Implementation of Concurrent Engineering for Large Assembly Design: Part(II) -Developmen of a Digital Mock-Up System for Reducin Design Changes- (부품수가 많은 조립체 설계를 위한 동시공학의 구현: Part (II) -설계 변경을 줄이기 위한 Digital Mocj-Up 시스템의 개발-)

  • 정융호
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.2
    • /
    • pp.103-110
    • /
    • 1997
  • In the development of large complex assembly, most design changes are from the following reasons.: 1) insufficient consideration of assembling sequence of downstream process. 2) interference and fit-up of related parts. 3) initial design changes which are not completely resolved. In order to reduce the first reason of above, the assembly-centric modeling methodology was proposed in the part (1) of the thesis. In this part (2), a Digital Mock-Up system, which is a tool to build a virtual mock-up in design stage, has been developed in order to prevent the other two reasons. The system can build a virtual assembly in various ways as followings.: 1) assembling parts which are located in user defined envelope. 2) assembling parts with the specified disciplines. 3) assembling parts that are selected in the part list. It can also make an assembly by the combination of above methods. In addition to that, it has the functions to read/write the virtual assembly and to explode parts of the assembly in desired direction. With the virtual assembly, engineers can design interference free parts without making physical mock-up. The system has been implemented with Oracle database management system in CATIA environment.

  • PDF

Adaptive Range-Based Collision Avoidance MAC Protocol in Wireless Full-duplex Ad Hoc Networks

  • Song, Yu;Qi, Wangdong;Cheng, Wenchi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3000-3022
    • /
    • 2019
  • Full-duplex (FD) technologies enable wireless nodes to simultaneously transmit and receive signal using the same frequency-band. The FD modes could improve their physical layer throughputs. However, in the wireless ad hoc networks, the FD communications also produce new interference risks. On the one hand, the interference ranges (IRs) of the nodes are enlarged when they work in the FD mode. On the other hand, for each FD pair, the FD communication may cause the potential hidden terminal problems to appear around the both sides. In this paper, to avoid the interference risks, we first model the IR of each node when it works in the FD mode, and then analyze the conditions to be satisfied among the transmission ranges (TRs), carrier-sensing ranges (CSRs), and IRs of the FD pair. Furthermore, in the media access control (MAC) layer, we propose a specific method and protocol for collision avoidance. Based on the modified Omnet++ simulator, we conduct the simulations to validate and evaluate the proposed FD MAC protocol, showing that it can reduce the collisions effectively. When the hidden terminal problem is serious, compared with the existing typical FD MAC protocol, our protocol can increase the system throughput by 80%~90%.

Performance analysis of DSSS- and CSS-based physical layer for IoT transmission over LEO satellites

  • Jung, Sooyeob;Im, Gyeongrae;Jung, Dong-Hyun;Kim, Pansoo;Ryu, Joon Gyu;Kang, Joonhyuk
    • ETRI Journal
    • /
    • v.44 no.4
    • /
    • pp.543-559
    • /
    • 2022
  • To determine a suitable waveform for Internet of Things (IoT) transmission over low-Earth orbit (LEO) satellites, this paper reports the results of a performance comparison between chirp spread spectrum (CSS)-based LoRa and direct sequence spread spectrum (DSSS)-based Ingenu. The performance of both waveforms was measured in terms of the packet error rate, throughput, and packet loss rate, considering the Doppler effect caused by the high speed of LEO satellites and the interference among multiple terminals. Simulation results indicate that the DSSS scheme is more suitable than the CSS scheme for high-traffic IoT services because of its robustness against interference among multiple terminals. However, the CSS scheme is more suitable than the DSSS scheme for high-mobility IoT services because of its robustness against the Doppler effect. We discuss various solutions, such as the preprocessing of Doppler effect and avoidance of packet collision, to enhance the performance of the DSSS and CSS schemes. The simulation results of the proposed solution show that the enhanced DSSS scheme can be a proper waveform in IoT transmission over LEO satellites for both the high-traffic and high-mobility services.