• Title/Summary/Keyword: physical damage

Search Result 1,265, Processing Time 0.023 seconds

Physical Therapy Approach and Management for Lymphedema : Expert Opinion (림프부종의 물리치료적 접근과 관리 : 전문가 견해)

  • Lee, Hwa-Gyeong;Kim, Seong-Yeol;Choi, Kyoung-Wook
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.3
    • /
    • pp.73-84
    • /
    • 2022
  • Background : Lymphedema is a progressive disorder characterized by the impairment of lymph flow from tissues to the blood circulation system. This occurs as a result of damage to the lymphatic system. Complex decongestive therapy (CDT) is a multimodal, conservative therapeutic approach that is used for the management of lymphedema. CDT consists of a combination of compression therapy, manual lymphatic drainage, exercise, and skin care. Purpose : This study aimed to provide a review of available physical therapy interventions as well as general care guidelines for patients with lymphedema. Methods : The recommendations and guidelines for physical therapy management, medical management, and general information were reviewed from the following sources: 1) The American Physical Therapy Association, 2) The Norton School of Lymphatic Therapy, and 3) The International Society of Lymphology. This review contains general information, including the medical management and the importance of physical therapy in lymphedema. Physical therapy management should be based on an assessment of the patients' presenting impairments, including based on inclusion or exclusion of physical therapy interventions. This review also outlines a step-by-step approach that starts with disease diagnosis and progression all the way through to rehabilitation as an outpatient. Conclusion : Depending on the patients' journey to recovery and the requirement for rehabilitation, physical therapy interventions should focus on the patients' needs including pain, appearance, physical function and general rehabilitation. We hope that this review will provide information on evidence-based physical therapy and general care to patients with lymphedema.

The Effects of Treadmill Training on Neurotrophins and Immediately Early Protein in Obese Rats (트레드밀 트레이닝이 비만 쥐의 neurotrophins와 초기발현 단백질에 미치는 영향)

  • Woo, Jin-Hee;Shin, Ki-Ok;Yeo, Nam-Heoh;Park, So-Young;Kang, Sung-Hwun
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.985-991
    • /
    • 2011
  • The purpose of this study was to investigate the biological effect of obesity-induced oxidative damage on neurogenesis and early protein expression. Obesity was induced I thirty 4-week old male Sprague-Dawley rats through a high fat diet for 15 weeks. After one week of environmental adaptation, the rats were divided into 2 groups: high fat diet sedentary group (HDS, n=15) and high fat diet training group (HDT, n=15). Exercise training was performed 5 times a week for 8 weeks, with mild-intensity treadmill running for weeks 1-4 and moderate-intensity treadmill running for weeks 5-8. After the 8 week training period, we analyzed lipid profiles, serum 8-hydroxyguanosine (8-OHdG), liver tissue malondialdehyde (MDA) related to oxidative damage factors, nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), c-fos, c-jun, and extracellular signal regulated kinase (Erk) in the hippocampus. The results of this study are as follows. There were differences between HDS and HDT in triglyceride (TG) and total cholesterol (TC) (p<0.05). In high density lipoprotein (HDL-c), the HDT was higher than HDS after treadmill training (p<0.05). In 8-OHdG, the HDT was lower than HDS after treadmill training (p<0.05). Genetic expressions of c-jun, BDNF and MDA in the HDT were higher than in the HDS after treadmill training in hippocampus (p<0.05). Therefore, we conclude that 8 weeks of treadmill training can improve imbalanced lipid profiles, reduce oxidative damage, and activate neurogenesis in obese rats.

Measurement of Physical Demage of Samples by Infrared Radiation (적외선 복사에너지에 의한 시료의 물리적 손상 측정)

  • Jeong, Dung-Sun;Kim, Gi-Hoon;Han, Jong-Sung;Kim, Hoon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.131-135
    • /
    • 2004
  • The molecules of the substance absorbing a light obtains the radiant energy to the wavelength of the light to make thermal reactions or photochemical reactions. Specially, thermal reactions by infrared radiation brings about physical damage by temperature rise process or temperature drop process of the material. In this study, a measuring system was set up to measure the temperature rise and temperature drop of each sample by infrared radiation from light source. And a physical demage of samples by infrared radiation were measured using the measuring system.

  • PDF

Review of the changes of proprioceptive sensory information (고유수용성 감각 정보의 변화에 관한 고찰)

  • Kang, Jong-Ho;Bang, Hyun-Soo;Kim, Jin-Sang
    • PNF and Movement
    • /
    • v.5 no.1
    • /
    • pp.19-28
    • /
    • 2007
  • Proprioception means the ability to perceive the sensation of position and movement of body. As it is transmitted to central nervous system and used in feed-back or feed-forward motor control, proprioception allows us to keep our normal movement and normal balance activity. However, the conditions such as injury, disease, aging and fatigue can damage the proprioceptiive sensation of position, movement and lead to a functional impairment and additional damages in musculoskeletal system, because they alter the amount of proprioceptive ability that transfer into the central nervous system. The purpose of this study was to identify the definition and the function of proprioception, to look into variations in injury, disease, aging and fatigue that can be easily met in clinical application and eventually to provide valuable aid for assessment and treatment.

  • PDF

Simulation and Measurement of Thermal Ablation in a Tissue-Mimicking Phantom and Ex-Vivo Porcine Liver by Using High Intensity Focused Ultrasound

  • Lee, Kang Il
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1289-1294
    • /
    • 2018
  • The present study aims to investigate experimentally and theoretically thermal ablation in soft tissues by using high intensity focused ultrasound (HIFU) to assess tissue damage during HIFU thermotherapy. The HIFU field was calculated by solving the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov equation from the frequency-domain perspective. The temperature field was calculated by solving Pennes' bioheat transfer equation, and the thermal dose required to create a thermal lesion was calculated by using the thermal dose formula based on the thermal dose of a 240-min exposure at $43^{\circ}C$. In order to validate the simulation results, we performed thermal ablation experiments in a tissue-mimicking phantom and ex-vivo porcine liver for two different HIFU source conditions by using a 1.1-MHz, single-element, spherically focused HIFU transducer. The small difference between the measured and the predicted lesion sizes suggests that the implementation of the numerical model used here should be modified to iteratively allow for temperature-dependent changes in the physical properties of tissues.

Damage at the Peach Due to Vibrational Stress During Transportation Simulation Test (모의수송 중 진동피로에 의한 복숭아의 손상)

  • Choi, Seung-Ryul;Lee, Young-Hee;Choi, Dong-Soo;Kim, Man-Soo
    • Journal of Biosystems Engineering
    • /
    • v.35 no.3
    • /
    • pp.182-188
    • /
    • 2010
  • Post-Harvest processing engineering is a field that studies prevention of the quality change of agricultural products during sorting, packaging, storage, and distribution after harvested. In distribution steps, agricultural products could be damaged by physical force, it is the main reason of low quality and they lost value of commodities. This study was performed to find the vibration characteristics of the peach, and to find the extent of the damage on the peach by fatigue stress. The vibration data was obtained on expressway and the vibration characteristics of peach was used to find the damage on the peach. To analyze the vibration characteristics of peach, the resonance frequency and vibration transmissibility were measured. The resonance frequency of the peach was 167.98 Hz and the transmissibility was 4.06 at resonance point. It was 150 ~ 250 Hz that the transmissibility was more than 1. And the transmissibility in simulated test was measured. When the trasmissibility was more than 1, the range was 15 ~ 65 Hz, and when it was less than 1, the range was 65 ~ 175 Hz. When the transmissibility was about 1, the range was 5 ~ 15 Hz. The damage and the vibration cycle numbers of peaches were compared with input frequency and acceleration. More damage and less cycle number happened in 30 Hz than in 62.5 Hz. The reason was that the transmissibility of 30 Hz was higher and the vibration displacement in lower frequency was more. The more acceleration and cycle number increased, the more the bruising volume of peaches increased. The bruising volume ratio for vibration fatigue was measured according to input acceleration and cycle number. Using measured data, regression models for bruising volume ratio(BVR) was developed as a function of the acceleration(A) and cycle number(CN) as follows. BVR = a * $A^b*$ $(CN)^c$

Damage Mechanism of Drift Ice Impact

  • Gong, Li;Wang, Zhonghui;Li, Yaxian;Jin, Chunling;Wang, Jing
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1350-1364
    • /
    • 2019
  • The ice damage occurs frequently in cold and dry region of western China in winter ice period and spring thaw period. In the drift ice condition, it is easy to form different extrusion force or impact force to damage tunnel lining, causing project failure. The failure project could not arrive the original planning and construction goal, giving rise to the water allocation pressure which influences diversion irrigation and farming production in spring. This study conducts the theoretical study on contact-impact algorithm of drift ices crashing diversion tunnel based on the symmetric penalty function in finite element theory. ANSYS/LS-DYNA is adopted as the platform to establish tunnel model and drift ice model. LS-DYNA SOLVER is used as the solver and LS-PREPOST is used to do post-processing, analyzing the damage degrees of drift ices on tunnel. Constructing physical model in the experiment to verify and reveal the impact damage mechanism of drift ices on diversion tunnel. The software simulation results and the experiment results show that tunnel lining surface will form varying degree deformation and failure when drift ices crash tunnel lining on different velocity, different plan size and different thickness of drift ice. The researches also show that there are damages of drift ice impact force on tunnel lining in the thawing period in cold and dry region. By long time water scouring, the tunnel lining surfaces are broken and falling off which breaks the strength and stability of the structure.

Earthquake Damage Assessment of Buildings in Urban Area using Disaster Management Platform (재난관리플랫폼을 이용한 도심지 건물군의 지진피해평가)

  • Jang, Sung-Hyun;Kwon, Dong-Hee;Hwang, Chan-Gyu;Choi, Soo-Young;Chey, Min-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.6
    • /
    • pp.25-31
    • /
    • 2019
  • Because of its physical characteristics, earthquake has a great impact on a wide area in a short time, so it needs a resilience based seismic countermeasures to restore the community function. For this reason, in this study, the seismic damages of urban buildings were assessed stochastically by virtual earthquakes using public data information and disaster management program(Ergo-EQ). A geographical map reflecting geological characteristics of the target area was created with the buildings and topographic data in Dalseo-gu, Daegu City. In addition, an integrated database including building characteristics was modified to be linked with the Ergo-EQ program. The seismic damages for the buildings were evaluated through the exceedance probability of four different damage levels. From the damage results, it can be identified not only the seismic damage of each building, but also the major factors affecting earthquake damage.

Damage detection in steel structures using expanded rotational component of mode shapes via linking MATLAB and OpenSees

  • Toorang, Zahra;Bahar, Omid;Elahi, Fariborz Nateghi
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • When a building suffers damages under moderate to severe loading condition, its physical properties such as damping and stiffness parameters will change. There are different practical methods besides various numerical procedures that have successfully detected a range of these changes. Almost all the previous proposed methods used to work with translational components of mode shapes, probably because extracting these components is more common in vibrational tests. This study set out to investigate the influence of using both rotational and translational components of mode shapes, in detecting damages in 3-D steel structures elements. Three different sets of measured components of mode shapes are examined: translational, rotational, and also rotational/translational components in all joints. In order to validate our assumptions two different steel frames with three damage scenarios are considered. An iterative model updating program is developed in the MATLAB software that uses the OpenSees as its finite element analysis engine. Extensive analysis shows that employing rotational components results in more precise prediction of damage location and its intensity. Since measuring rotational components of mode shapes still is not very convenient, modal dynamic expansion technique is applied to generate rotational components from measured translational ones. The findings indicated that the developed model updating program is really efficient in damage detection even with generated data and considering noise effects. Moreover, methods which use rotational components of mode shapes can predict damage's location and its intensity more precisely than the ones which only work with translational data.

Target-free vision-based approach for vibration measurement and damage identification of truss bridges

  • Dong Tan;Zhenghao Ding;Jun Li;Hong Hao
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.421-436
    • /
    • 2023
  • This paper presents a vibration displacement measurement and damage identification method for a space truss structure from its vibration videos. Features from Accelerated Segment Test (FAST) algorithm is combined with adaptive threshold strategy to detect the feature points of high quality within the Region of Interest (ROI), around each node of the truss structure. Then these points are tracked by Kanade-Lucas-Tomasi (KLT) algorithm along the video frame sequences to obtain the vibration displacement time histories. For some cases with the image plane not parallel to the truss structural plane, the scale factors cannot be applied directly. Therefore, these videos are processed with homography transformation. After scale factor adaptation, tracking results are expressed in physical units and compared with ground truth data. The main operational frequencies and the corresponding mode shapes are identified by using Subspace Stochastic Identification (SSI) from the obtained vibration displacement responses and compared with ground truth data. Structural damages are quantified by elemental stiffness reductions. A Bayesian inference-based objective function is constructed based on natural frequencies to identify the damage by model updating. The Success-History based Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE) is applied to minimise the objective function by tuning the damage parameter of each element. The locations and severities of damage in each case are then identified. The accuracy and effectiveness are verified by comparison of the identified results with the ground truth data.