• Title/Summary/Keyword: physical and mechanical properties of film

Search Result 104, Processing Time 0.031 seconds

Simulations of fiber spinning and film blowing based on a molecular/continuum model for flow-induced crystallization

  • McHugh, Anthony J.;Doufas, A.K.
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • This paper describes the application of our recently developed two-phase model for flow-induced crystallization (FIC) to the simulation of fiber spinning and film blowing. 1-D and 2-D simulations of fiber spinning include the combined effects of (FIC), viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity and the process dynamics are modeled from the spinneret to the take-up roll device (below the freeze point). 1-D model fits and predictions are in very good quantitative agreement with high- and low-speed spinline data for both nylon and PET systems. Necking and the associated extensional softening are also predicted. Consistent with experimental observations, the 2-D model also predicts a skin-core structure at low and intermediate spin speeds, with the stress, chain extension and crystallinity being highest at the surface. Film blowing is simulated using a "quasi-cylindrical" approximation for the momentum equations, and simulations include the combined effects of flow-induced crystallization, viscoelasticity, and bubble cooling. The effects of inflation pressure, melt extrusion temperature and take-up ratio on the bubble shape are predicted to be in agreement with experimental observations, and the location of the frost line is predicted naturally as a consequence of flow-induced crystallization. An important feature of our FIC model is the ability to predict stresses at the freeze point in fiber spinning and the frost line in film blowing, both of which are related to the physical and mechanical properties of the final product.l product.

  • PDF

Development of Oxo-biodegradable Transparent Bio Films Using Biomass and Biodegradable Catalyst (바이오매스 및 생분해 촉매제를 이용한 산화생분해 투명 바이오 필름 개발)

  • You, Young-Sun;Kim, Young-Tae;Park, Dae-Sung;Choi, Sung-Wook
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • Bio-based plastics containing the biomass content higher than 25 wt% have been considered as environment-friendly materials due to their effects on the reduction in the $CO_2$ emission and petroleum consumption as well as biodegradability after use. In this study, poly vinyl chloride, plant-derived plasticizers, by adding a biodegradable catalyst was observed a change in the biodegradability and physical properties. To produce the oxidative decomposition transparent bio film, which is broken down in the initial percent elongation and physical properties such as tensile strength, it was to test the safety of the product as a food packaging material. Poly vinyl chloride, primary plasticizer, secondary plasticizer, anti fogging agent, the combined stabilizer were mixed in a high speed mixer, then extruded using an extrusion molding machine, after cooling, winding, to produce a oxidative decomposition transparent bio film and the control film, with a thickness of $12{\mu}m$ through winder role. Mechanical properties tensile strength, elongation, and the maximum load elongation and biodegradation test. Transparent bio film produced by biodegradation catalyst is compared with the control film. Tensile strength and elongation of films were found to be no significant difference. Further, as a result of the biodegradation test for 45 days based on the ASTM D6954-04 method, biodegrability of film is 61.4%.

Designed of rPP/d2w®/ZnO Nanocomposite Flexible Film for Food Packaging and Characterization on Mechanical and Antimicrobial Properties (산화분해촉매를 함유한 rPP/ZnO 나노컴포지트 유연식품포장필름 제조 및 물성 특성 연구)

  • Lee, Jin-kyoung;Gil, Bo-min;Lee, Dong-jin;Lee, Ik-mo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • In this study, pro-oxidant($d2w^{(R)}$) and rPP/ZnO nanocomposite flexible films for food packaging were prepared, and their mechanical and antimicrobial properties were investigated. As a result, the carbonyl index and hydroxyl index increased with exposured time to heat and UV rays. Surface analysis showed that the addition of zinc oxide improved the dispersibility and compatibility of the polymer, so that the surface of the composite film was smooth and the zinc oxide particles were smaller than the compared film. And it kept the physical properties by heat and UV ray blocking effect, and it worked to reduce decomposition. In the antimicrobial activity test, the microbial reduction rate was 3 logs or more at the use concentration of zinc oxide. The tensile strength was increased and the elongation was decreased. Oxidative degradability of multi-layered film in UV exposured for 72 hours, the molecular weight of the film decreased by 75.6%, 1,294 g/mol Mn and 5,920 g/mol Mw. In the safety analysis of food packaging materials, we obtained that are in standard of polypropylene, a food contact material of domestic law.

Effect of Plasticizer on Physical Properties of Poly(vinyl acetate-co-ethylene) Emulsion (Poly(vinyl acetate-co-ethylene) 에멀젼 물성에 대한 가소제 효과)

  • Choi, Yong-Hae;Lee, Won-Ki
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.459-463
    • /
    • 2009
  • In this study, physical properties of poly(vinyl acetate-co-ethylene) (VAE) emulsion were investigated by adding different amounts of di-butyl phthalate (DBP) which is a common plasticizer of VAE. The glass transition temperature $(T_g)$ of the dried plasticized VAE emulsion film, which measured by Differential Scanning Calorimeter, was decreased with increasing the DBP contents while the viscosity of the plasticized VAE emulsion was increased with the DBP contents. These results suggest that the plasticizer in the dried VAE film can prevent the strong interaction between chains, resulted by the decrease of $T_g$. In the emulsion, however, the particle sizes were swelled by the penetration of plasticizers and then its viscosity increased with the DBP content. When the DBP was added, the mechanical properties of the plasticized VAE films, such as tensile strength, elongation and creep resistance, were decreased while the water resistance was increased.

Study on the Synthesis of Polyurethane Cationomers and Their Mechanical Properties (양이온성 폴리우레탄의 합성 및 기계적 특성에 관한 연구)

  • Ann, Choun-Kee;Jin, Je-Yong;Choi, Sei-Yong
    • Elastomers and Composites
    • /
    • v.33 no.3
    • /
    • pp.177-184
    • /
    • 1998
  • Polyurethane(PU) prepolymers were synthesized from polytetramethylene ether glycol(PTMG), with 4,4'-diphenylmethane diisocyanate(MDI), toluene 2,4-diisocyanate (TDI) and isophoron diisocyanate(IPDI). After chain extention using n-methyl-diethanol amine(n-MDEA), aqueous polyurethane cationomers were prepared by addition of glycolic acid(GA) as a quaternizer. The effect of the content of chain extender and the degree of neutralization on the stability of emulsion, adhesive strength, viscosity, glass transition temperature and physical properties of emulsion cast film were investigated using UTM, viscometer and DSC.

  • PDF

Characterization of Fracture Toughness and Wear Behavior for Plasma Ceramic Coated Materials (플라즈마 코팅재료의 파괴인성과 마모 거동)

  • Ha, Sun-Ho;Lee, Dong-Woo;Rehman, Atta Ur;Wasy, Abdul;Song, Jung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.123-130
    • /
    • 2013
  • Zirconia is well known in industrial applications for its mechanical characteristics. DLC (diamond-like carbon) have high elastic modulus, high electric resistivity, high dielectric constant, high wear resistance, low friction coefficient, bio compatibility, chemically inert and thermally stable. Because of all these physical and chemical properties these types of coatings have become key procedure for thin coating. Friction coefficient of DLC films is already evaluated and the current work is a further advancement by calculating the fracture toughness and wear resistance of these coatings. In the present study DLC thin film coatings are developed on $ZrO_2$ alloy surface using Plasma Enhanced Chemical Vapor Deposition (PECVD) method. Vicker hardness test is employed and it was concluded that, DLC coatings increase the Vickers hardness of ceramics.

Study on the 316LVM Stainless Steel for Surgical Implant Materials (생체용 316LVM 스테인레스강 개발에 관한 연구)

  • Sin, Myeong-Cheol;Lee, Gyu-Hwan;Lee, Han-Gu
    • Journal of Biomedical Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.71-82
    • /
    • 1982
  • The 316LVM stainless steel that is widely used in surgical implant has been studied. The objective of this study is to develop the domestic production of the surgical implant materials. In the work, the metalllirgical phenomena, physical and chemical properties and biocompatibility of the materials are investigated. According to the experimental observation, corrosion resistance is strongly depended on the -ferrite structure and passive film, and mechanical properties are mainly depended on the cold reduction ratio. The -ferrite structure is minimized in the 16.651 Cr and 14%Ni contents, and yield strength is 104 kg/mm$^2$ at 45% cold reduction. Biocompatibility is excellent in the mouse body test for six weeks.

  • PDF

Comparison of Mechanical and Interfacial Properties of Carbon Fiber Reinforced Recycled PET Composites with Thermoforming Temperature and Time (열 성형 온도 및 시간에 따른 탄소섬유 강화 재활용 PET 복합재료의 계면 및 기계적 물성 비교)

  • Baek, Yeong-Min;Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.175-180
    • /
    • 2017
  • Currently, since carbon fiber reinforced plastics (CFRPs) are lightweight and have excellent physical properties, their demand has increased dramatically. Many works have studied the CFRPs based on recycled thermoplastics. In this study, the applicability of recycled composite was evaluated using recycled polyethylene terephthalate (PET). PET was collected from waste materials used in beverage bottles and processed to produce PET films. Optimal thermoforming temperature and time were analyzed by comparing the mechanical properties with forming temperature and time difference for producing PET films. CF mat and PET film were used to determine the suitable parameters for the optimum thermoforming of CF/PET composites. The mechanical properties of each thermoforming condition were verified by bending test. The degree of impregnation of the PET film into the CF mat was evaluated by cross-sectional photographs, whereas the interfacial properties were evaluated by interlaminar shear strength (ILSS). Ultimately, it was confirmed that the thermoforming condition for forming the CF/recycled PET composites yielding the optimal mechanical and interfacial properties was at $270^{\circ}C$ for 5 minutes.

Characterization of silica nano-particle filled poly (ethylene 2,6-naphthalate) (실리카 나노입자 충진 폴리에틸렌 나프탈레이트의 특성)

  • Ahn, Seon-Hoon;Kim, Seong-Hun;Im, Seung-Soon;Lee, Seung-Goo
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.52-55
    • /
    • 2003
  • Poly (ethylene 2, 6-naphthalate) (PEN) has been used for a high performance engineering plastics such as fiber, film, and packaging, because of excellent physical properties and outstanding gas barrier characteristics [1-2]. However, the application of PEN is limited because PEN exhibits a relatively high melt viscosity. Recently, many researches for organic/inorganic composites by applying nano-particles to the polymer matrix have been carried out [3], and the nano-particles exhibited greatly improved mechanical and rheological properties [4]. (omitted)

  • PDF

THE EFFECT OF OXYGEN GAS PRESSURE ON THE PROPERTIES OF Pb ADDED Ba-FERRITE SPUTTERED FILMS

  • Morisako, A.;Wada, F.;Matsumoto, M.;Naoe, M.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.627-630
    • /
    • 1995
  • BaM films have a lot of advantage of chemical stability and mechanical stability as compared with a metallic thin film. In this paper, (Ba.Pb)M films have been prepared by using dc magnetron sputtering system and the dependences of their crystallographic characteristics and magnetic properties on oxygen pressure($Po_{2}$) were studied. The films prepared at $Po_{2}$ of around 0.02mTorr exhibit a fine particle-like structure and ${\Delta}{\theta}_{50}$ is as small as $1^{\circ}$. $Hc_{\bot},\;Hc_{//}$ and Ms of (Ba.Pb)M films are 700-800Oe, 200Oe and 180-230emu/cc, respectively.

  • PDF