• Title/Summary/Keyword: physical and mechanical properties of film

Search Result 103, Processing Time 0.03 seconds

A Study on the Fire Safety of Polypropylene Powder Coatings with Flame Retardant (난연성을 갖는 폴리프로필렌 분말도료의 화재안전성 연구)

  • Lee, Soon Hong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.17-22
    • /
    • 2013
  • The production of flame-retardant polypropylene powder coating with the addition of flame retardant (PP) controlled rheology (CR) and polypropylene, were discussed comparing the mechanical properties, such as safety and topical coating properties. Mechanical properties measurements showed almost the same as AA-1 where the flame retardant is not added. These results appear to, and because it is excellent in compatibility with polypropylene and flame retardant. Physical properties of the coating film, a test piece flame retardant organic is added, although it shows the physical properties of the coating film was stable, did not show the physical properties satisfactory is the test piece flame retardant of weapons has been added. In the safety of the topic, AA-4, AA-5 the results of thermal analysis but it is excellent, the LOI is excellent in 27.8 vol% 27.0 vol% in AA-4 and AA-2, AA-3, and 27.4 vol%, did not show many obstacles flame AA-5 result UL94.

Physical, Mechanical, and Antimicrobial Properties of Edible Film Produced from Defatted Soybean Meal Fermented by Bacillus subtilis

  • KIM HYUNG-WOOK;KO EUN-JUNG;HA SANG-DO;SONG KYUNG-BIN;PARK SANG-KYU;CHUNG DUCK-HWA;YOUNS KWANG-SUP;BAE DONG-HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.815-822
    • /
    • 2005
  • In order to extend the shelf-life of packaged or coated foods, an antibacterial edible film was developed from soybean meal that had been fermented with Bacillus subtilis under the optimum condition of pH 7.0-7.5 and $33^{\circ}C$ for 33 h. The water vapor permeability of the fermented film ($86.0 mg/cm^2{\cdot}h$) was higher than those of normal soybean films ($66.9 mg/cm^2{\cdot}h$). Protein solubility of the fermented film was also higher than ordinary soy protein film at the pH range of 3 -10. The fermented soybean film had higher tensile strength and lower $\%$ elongation (elongation rate) than the ordinary soybean film, mainly because partial hydrolysis of proteins in the soybean film occurred during fermentation. Antimicrobial properties of the fermented film on foodstuffs were measured by placing the films on surime, jerked beef, and mashed sausage media; containing $10^2-10^3$ CFU/plate of foodborne pathogenic bacteria, and showed significantly higher inhibitory effects on the growths of all the indicating bacteria. The film could be used as a packaging material in the food industry. However, before direct application of the fermented film to the commercial food industry, its poor mechanical and antibacterial properties need to be improved.

Manufacturing and Characteristics Analysis of PU/MWNT Composite Film for Forming (발포용 PU/MWNT 복합필름의 제조와 특성분석)

  • Park, Jun-Hyeong;Kim, Jeong-Hyun;Kim, Seung-Jin
    • Textile Coloration and Finishing
    • /
    • v.22 no.4
    • /
    • pp.362-372
    • /
    • 2010
  • This paper surveys the physical properties of the multiwall carbon nanotube (MWNT) and polyurethane composite film for improvement of mechanical properties and electrical characteristics. The modification of MWNT was carried out by acid treatment with nitric and sulphuric acid mixed solution, and then followed by thermal treatment for enhancing MWNT dispersion with polyurethane. This modified MWNT was mixed with polyurethane by changing the loading content of MWNT and dispersion time under the dimethylformamide solution in the ultrasonic wave apparatus. Various physical characteristics of the modified PU/MWNT films were measured and analyzed in terms of the loading content and dispersion time. The maximum absorbance of the PU/MWNT films were observed with the 2wt% loading at dispersion times of 2 and 24 hour, respectively. The minimum electrical volume resistivity of PU/MWNT film was shown at the loading content of 0.5wt% or more irrespective of dispersion treating time. However the optimum condition was assumed to 2wt% loading at dispersion time of 2 hours by assessing the surface profile of the film using video microscope. The breaking stress and strain of the PU/MWNT film decreased with increasing loading content, but no change of physical properties was shown with increasing in dispersion time.

A Study on Fabrication of Polyester Copolymers (IV) - Physical Properties of PET/BPA Copolymer - (폴리에스테르 공중합체의 Fabrication 연구(IV) - PET/BPA 공중합체의 물리적 특성 -)

  • 현은재;이소화;제갈영순;장상희;최현국
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.208-217
    • /
    • 2001
  • PET/BPA copolymer of terephthalic acid, bisphenol-A and ethylene glycol was melt-pressed and quenched in ice water. This copolymer film was drawn by capillary rheometer. Shrinkage, crystallinity, morphology, thermal, dynamic mechanical, and mechanical properties of these copolymer films were investigated. The PET/BPA copolymer film exhibited T$_{m}$ lower than that of PET film. The crystallinity and density of these drawn copolymer films increased with draw ratio and draw rate but decreased with draw temperature. The tensile strength and tensile modulus of the copolymer films increased with draw ratio but decreased with draw temperature. Shrinkage of the drawn copolymer film decreased with draw ratio and draw rate.e.

  • PDF

A Study on the Preparation of Dextran Film and Its Modification (덱스트란 필름의 제조 및 개질에 관한 연구)

  • 김성현;김병훈;김도만;조동련
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.778-784
    • /
    • 2002
  • Chemical modification of a dextran film to improve its physical properties was carried out by addition of plasticizers and crosslinking agents. Moreover, low-temperature plasma treatment with acetylene gas was done. The dextran film showed high mechanical strength but was brittle and vulnerable to moisture. When plasticizer was added, it became very soft but with large reduction of mechanical strength. However, a flexible film with fairly high mechanical strength and water resistance was prepared when the film was crosslinked by adding crosslinking agent with or after the addition of plasticizer. Treatment with an acetylene plasma changed the dextran film surface from hydrophilic to hydrophobic with little influence on the bulk properties of the film.

Fabrication of Silver Nanowire-Graphene Oxide Hybrid Transparent Conductive Thin Film with Improved Mechanical Stability (기계적 안정성이 향상된 은나노와이어-그래핀옥사이드 하이브리드 투명 전도성 박막의 제작)

  • Kim, Ju-Tae;Woo, Ju Yeon;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.903-909
    • /
    • 2015
  • In this study, we used GO (graphene oxide) in order to enhance the adhesion between Ag NWs (nanowires) and substrates. By using a mixture solution of GO and Ag NW, a vacuum filtration process was used to fabricate a 50nm diameter thin film. Next, by using a light annealing process, the mechanical and electrical stability of Ag NW network was improved without any other treatment. The physical properties of the Ag NW - GO hybrid transparent conductive thin film was characterized in terms of a bending test, resistance and transmittance test, and nanoscale imaging using field-emission scanning electron microscopy.

Microstrcture and Mechanical Properties of HfN Films Deposited by dc and Inductively Coupled Plasma Assisted Magnetron Sputtering (직류 및 유도결합 플라즈마 마그네트론 스퍼터링법으로 제조된 HfN 코팅막의 미세구조 및 기계적 물성연구)

  • Jang, Hoon;Chun, Sung-Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.2
    • /
    • pp.67-71
    • /
    • 2020
  • For deposition technology using plasma, it plays an important role in improving film deposited with high ionization rate through high density plasma. Various deposition methods such as high-power impulse magnetron sputtering and ion-beam sputtering have been developed for physical vapor deposition technology and are still being studied. In this study, it is intended to control plasma using inductive coupled plasma (ICP) antennas and use properties to improve the properties of Hafnium nitride (HfN) films using ICP assisted magnetron sputtering (ICPMS). HfN film deposited using ICPMS showed a finer grain sizes, denser microstructure and better mechanical properties as ICP power increases. The best mechanical properties such as nanoindentation hardness of 47 GPa and Young's modulus of 401 GPa was obtained from HfN film deposited using ICPMS at ICP power of 200 W.

Characteristics of LDPE resin film depending on RP contents (적인 함유량에 따른 LDPE 수지 film의 특성연구)

  • JO, Dong-Soo;Noh, Young-Tai;Park, Byung-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6655-6665
    • /
    • 2015
  • Due to tightened environmental regulations on halogen type flame retardants, the portions of those based on phosphorous compounds that are non-halogen type is rising. When producing functional film, the physical and thermal properties become distinctly different depending on the amount of Red-phosphorus(RP) addition which causes flame resistance. The physical properties of resin fall in big scale when too much flame retardants are added, and it is hard to be applied to functional films such as shrink or anticorrosive film. The purpose of this research is to study the effects on mechanical, physical, and other properties of RP-LDPE films by changing the RP-MB contents. The LDPE film used for this study was produced through blow-type injection molding. The flame resistance was VTM-0, and the tear resistance showed inverse trends of MD and TD. Contraction percentage showed no relationship with the amount of RP content, but the anti-corrosive property showed 0.05 % better result than the national anti-corrosion shrink film reliability standard.

Electroless Nickel Plating (무전해 니켈도금에 대하여(II))

  • 지태촌;여운관
    • Journal of the Korean institute of surface engineering
    • /
    • v.15 no.2
    • /
    • pp.57-67
    • /
    • 1982
  • Electroless Ni-plating is often utilized in industries due to its physical and mechanical characteristics in contrast to conventional electroplatings. Thus, electroless Ni-plating will be broadly applicated in many fields. However, The physial and mechanical properties of this depositss depend largely on the structure and P content of film and heat treatment. And here discused about the important results of those past research.

  • PDF

Edible Packaging Film Derived from Mechanically Deboned Chicken Meat Proteins: Effect of Transglutaminase on Physicochemical Properties

  • Yayli, Damla;Turhan, Sadettin;Saricaoglu, Furkan Turker
    • Food Science of Animal Resources
    • /
    • v.37 no.5
    • /
    • pp.635-645
    • /
    • 2017
  • In this study, effect of transglutaminase (TGase) addition on physical, water barrier, optical and mechanical properties of mechanically deboned chicken meat protein (MDCM-P) films was investigated. When TGase was added to the films, the thickness increased, but the solubility decreased. Films treated with TGase exhibited higher water vapor permeability than control film (p<0.05). When TGase concentration increased, the $L^*$ values of films decreased, but $a^*$ and $b^*$ values increased. All films showed very good barrier properties against UV light. The highest tensile strength was obtained in MDCM-P films containing 3% TGase (p<0.05). The elongation at break values increased with the TGase concentration increasing from 1 to 3%, but decreased at higher enzyme concentration (p<0.05). The addition of TGase altered molecular organization and intermolecular interaction in the film matrix. TGase treated films showed smoother and ordered surface structure and homogeneous and compact microstructure. The results indicated that TGase use can be an effective approach in improving the solubility and mechanical properties of MDCM-P films.