• Title/Summary/Keyword: phylogenetic trees

Search Result 194, Processing Time 0.028 seconds

Identification, Characterization and Phylogenic Analysis of Conserved Genes within the p74 Gene Region of Choristoneura fumiferana Granulovirus Genome

  • Rashidan, Kianoush Khajeh;Nassoury, Nasha;Giannopoulos, Paresa N.;Mauffette, Yves;Guertin, Claude
    • BMB Reports
    • /
    • v.37 no.6
    • /
    • pp.700-708
    • /
    • 2004
  • The genes located within the p74 gene region of the Choristoneura fumiferana granulovirus (ChfuGV) were identified by sequencing an 8.9 kb BamHI restriction fragment on the ChfuGV genome. The global guanine-cytosine (GC) content of this region of the genome was 33.02%. This paper presents the ORFs within the p74 gene region along with their transcriptional orientations. This region contains a total of 15 open reading frames (ORFs). Among those, 8 ORFs were found to be homologues to the baculoviral ORFs: Cf-i-p , Cf-vi, Cf-vii, Cf-viii (ubiquitin), Cf-xi (pp31), Cf-xii (lef-11), Cf-xiii (sod) and Cf-xv-p (p74). To date, no specific function has been assigned to the ORFs: Cf-i, Cf-ii, Cf-iii, Cf-iv, Cf-v, Cf-vi, Cf-vii, Cf-ix and Cf-x. The most noticeable ORFs located in this region of the ChfuGV genome were ubiquitin, lef-11, sod, fibrillin and p74. The phylogenetic trees (constructed using conceptual products of major conserved ORFs) and gene arrangement in this region were used to further examine the classification of the members of the granulovirus genus. Comparative studies demonstrated that ChfuGV along with the Cydia pomonella granulovirus (CpGV), Phthorimaea operculella granulovirus (PhopGV), Adoxophyes orana granulovirus (AoGV) and Cryptophlebia leucotreta granulovirus (ClGV) share a high degree of amino acids sequence and gene arrangement preservation within the studied region. These results support a previous report, which classified a granuloviruses into 2 distinct groups: Group I: ChfuGV, CpGV, PhopGV and AoGV and Group II: Xestia c-nigrum granulovirus (XcGV) and Plutella xylostella granulovirus (PxGV). The phylogenetic and gene arrangement studies also placed ClGV as a novel member of the Group I granuloviruses.

Phylogenetic Analysis of Agaricus blazei and Related Taxa by Comparing the Sequences of Internal Transcribed Spacers and 5.8S rDNA (Internal Transcribed Spacer와 5.8S ribosomal DNA의 염기서열 분석에 의한 Agaricus blazei와 근연종에 대한 계통분류학적인 연구)

  • 김기영;하명규;이태호;이재동
    • Korean Journal of Microbiology
    • /
    • v.35 no.3
    • /
    • pp.180-184
    • /
    • 1999
  • Molecular spslemaucs of Agaricus species was investigated on the base of the sequences of the internal transcribed spaceriITS) regions in ribosomal DNA (rDNA). The sequences of the ITS region in 5 species and two group of Agaricus genus were resolved. In the phylogenetic trees. the species generally divided inlo two subclusters, refered to here as the group I and group 11. The group I consisted of Agaricus blazei ATCC 76739, Agarictrs blazei species cultivated in Korean hmings. Ago/-icus anmensis IMSNU 32049 and Agaricus can~pestris VPI-OKM 25665. Between Agaricus blazei NCC 76739 and the Agaricus blazei species cultivated in Korean farmings had the variation in lhe 5 nucleotide on the ITS regions. These varieties were presumed the variation by the geographic and cultivated conditions. In addition the subgroup of group I was formed by Agaricus arvensis LMSNU 32049 and Agaricus carnpests VPI-OKM 25665. The group IT included Agnrictrs bispoms CH 3004 and Agaricus pocillotor DUKE-J 173.

  • PDF

Determining the Specific Status of Korean Collared Scops Owls

  • Hong, Yoon Jee;Kim, Young Jun;Murata, Koichi;Lee, Hang;Min, Mi-Sook
    • Animal Systematics, Evolution and Diversity
    • /
    • v.29 no.2
    • /
    • pp.136-143
    • /
    • 2013
  • The collared scops owl that occurs in Korea is a protected species but its exact specific status has been questioned. To resolve the species status, a molecular phylogenetic analysis was conducted using two fragments of mitochondrial DNA, cytochrome b (cyt b, 891 bp) and NADH dehydrogenase subunit 2 (ND2, 627 bp) genes. Phylogenetic trees of cyt b revealed that all Korean specimens formed a monophyletic group with Japanese scops owl Otus semitorques with very low sequence divergence (d=0.008). We obtained a similar ND2 tree as well (d=0.003); however, the genetic distance between Korean individuals and O. lempiji from GenBank (AJ004026-7, EU348987, and EU601036) was very high and sufficient enough to separate them as species (cyt b, d=0.118; ND2, d=0.113). We also found that Korean species showed high differentiation from O. bakkamoena (AJ004018-20 and EU601034; cyt b, d=0.106; ND2, d=0.113) and O. lettia (EU601109 and EU601033, cyt b, d=0.110; ND2, d=0.117) as well. Therefore, we suggest that the Korean collared scops owl should be designated as Otus semitorques.

The Determination of the Partial 28S Ribosomal DNA Sequences and Rapid Detection of Phellinus linteus and Related species

  • Park, Hyung-Sik;Kim, Gi-Young;Nam, Byung-Hyouk;Lee, Sang-Joon;Lee, Jae-Dong
    • Mycobiology
    • /
    • v.30 no.2
    • /
    • pp.82-87
    • /
    • 2002
  • Species of Phellinus were known to harmful fungi causing white pocket rot and severe plant disease such as canker or heartrot in living trees in the West, but some species have been used to traditional medicines in the Orient for a long time. In this study the partial D1-D2 nucleotide sequences of 28S ribosomal DNA from 13 Phellinus strains were determined and compared with the sequences of 21 strains obtained from GenBank database. According to the neighbor-joining(NJ) method comparing the sequence data the phylogenetic tree was constructed. The phylogenetic tree displayed the presence of four groups. Group I includes P. ferreus, P. gilvus and P. johnsonianus, Group II contains P. laevigatus, P. conchatus and P. tremulae, Group III possesses P. linteus, P. weirianus, P. baumii, P. rhabarbarinus and P. igniarius, and Group IV comprises P. pini, P. chrysoloma. P. linteus and P. baumii, which were used mainly in traditional medicine, belong to the same group, but exactly speaking both were split into two different subgroups. To detect P. linteus only, we developed the PCR primer, D12HR. The primer showed the specific amplification of P linteus, which is permitted to medicinal mushroom in the East. The results make a potential to be incorporated in a PCR identification system that could be used for the rapid identification of this species from its related species, P. linteus especially.

Genomic characteristics of natural recombinant infectious bronchitis viruses isolated in Korea

  • Moon, Hyun-Woo;Sung, Haan Woo;Kwon, Hyuk Moo
    • Korean Journal of Veterinary Research
    • /
    • v.59 no.3
    • /
    • pp.123-132
    • /
    • 2019
  • Two infectious bronchitis virus (IBV) K046-12 and K047-12 strains were isolated and the nearly complete genomes of them were sequenced. Sequence comparisons showed that the K046-12 genome was most similar to Korean IBV strains, and the K047-12 genome was most similar to QX-like IBV strains. Phylogenetic analysis showed that nearly all K046-12 and most K046-12 genes were placed in the same cluster as Korean IBV isolates, but the S1 region was placed in the same cluster as Mass-type IBVs. For K047-12, nearly all K047-12 and most K047-12 genes were located in the same cluster as QX-like IBVs, but the M region was located in the same cluster as Korean IBV isolates with K047-12. Recombination analysis confirmed that K046-12 is a recombinant strain with the primary parental sequence derived from Korean IBVs and minor parental sequence derived from Mass-type IBV, and K047-12 is a recombinant strain with the major parental sequence derived from QX-IBV and minor parental sequence derived from Korean IBVs. This study showed that new IBV recombinants are constantly generated among various IBVs, including those used for vaccination. Therefore, genetic analysis of new virus isolates should be performed for effective infectious bronchitis control and appropriate vaccine development.

Complete Genome Sequencing of Bacillus velezensis WRN014, and Comparison with Genome Sequences of other Bacillus velezensis Strains

  • Wang, Junru;Xing, Juyuan;Lu, Jiangkun;Sun, Yingjiao;Zhao, Juanjuan;Miao, Shaohua;Xiong, Qin;Zhang, Yonggang;Zhang, Guishan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.794-808
    • /
    • 2019
  • Bacillus velezensis strain WRN014 was isolated from banana fields in Hainan, China. Bacillus velezensis is an important member of the plant growth-promoting rhizobacteria (PGPR) which can enhance plant growth and control soil-borne disease. The complete genome of Bacillus velezensis WRN014 was sequenced by combining Illumina Hiseq 2500 system and Pacific Biosciences SMRT high-throughput sequencing technologies. Then, the genome of Bacillus velezensis WRN014, together with 45 other completed genome sequences of the Bacillus velezensis strains, were comparatively studied. The genome of Bacillus velezensis WRN014 was 4,063,541bp in length and contained 4,062 coding sequences, 9 genomic islands and 13 gene clusters. The results of comparative genomic analysis provide evidence that (i) The 46 Bacillus velezensis strains formed 2 obviously closely related clades in phylogenetic trees. (ii) The pangenome in this study is open and is increasing with the addition of new sequenced genomes. (iii) Analysis of single nucleotide polymorphisms (SNPs) revealed local diversification of the 46 Bacillus velezensis genomes. Surprisingly, SNPs were not evenly distributed throughout the whole genome. (iv) Analysis of gene clusters revealed that rich gene clusters spread over Bacillus velezensis strains and some gene clusters are conserved in different strains. This study reveals that the strain WRN014 and other Bacillus velezensis strains have potential to be used as PGPR and biopesticide.

Complete mitochondrial genome sequence of Tosa-Jidori sheds light on the origin and evolution of Japanese native chickens

  • Osman, Sayed A.M.;Nishibori, Masahide;Yonezawa, Takahiro
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.941-948
    • /
    • 2021
  • Objective: In Japan, approximately 50 breeds of indigenous domestic chicken, called Japanese native chickens (JNCs), have been developed. JNCs gradually became established based on three major original groups, "Jidori", "Shoukoku", and "Shamo". Tosa-Jidori is a breed of Jidori, and archival records as well as its morphologically primitive characters suggest an ancient origin. Although Jidori is thought to have been introduced from East Asia, a previous study based on mitochondrial D-loop sequences demonstrated that Tosa-Jidori belongs to haplogroup D, which is abundant in Southeast Asia but rare in other regions, and a Southeast Asian origin for Tosa-Jidori was therefore suggested. The relatively small size of the D-loop region offers limited resolution in comparison with mitogenome phylogeny. This study was conducted to determine the phylogenetic position of the Tosa-Jidori breed based on complete mitochondrial D-loop and mitogenome sequences, and to clarify its evolutionary relationships, possible maternal origin and routes of introduction into Japan. Methods: Maximum likelihood and parsimony trees were based on 133 chickens and consisted of 86 mitogenome sequences as well as 47 D-loop sequences. Results: This is the first report of the complete mitogenome not only for the Tosa-Jidori breed, but also for a member of one of the three major original groups of JNCs. Our phylogenetic analysis based on D-loop and mitogenome sequences suggests that Tosa-Jidori individuals characterized in this study belong to the haplogroup D as well as the sub-haplogroup E1. Conclusion: The sub-haplogroup E1 is relatively common in East Asia, and so although the Southeast Asian origin hypothesis cannot be rejected, East Asia is another possible origin of Tosa-Jidori. This study highlights the complicated origin and breeding history of Tosa-Jidori and other JNC breeds.

Bioluminescence capability and intensity in the dinoflagellate Alexandrium species

  • Park, Sang Ah;Jeong, Hae Jin;Ok, Jin Hee;Kang, Hee Chang;You, Ji Hyun;Eom, Se Hee;Yoo, Yeong Du;Lee, Moo Joon
    • ALGAE
    • /
    • v.36 no.4
    • /
    • pp.299-314
    • /
    • 2021
  • Some species in the dinoflagellate genus Alexandrium are bioluminescent. Of the 33 formally described Alexandrium species, the bioluminescence capability of only nine species have been tested, and eight have been reported to be bioluminescent. The present study investigated the bioluminescence capability of seven Alexandrium species that had not been tested. Alexandrium mediterraneum, A. pohangense, and A. tamutum were bioluminescent, but A. andersonii, A. hiranoi, A. insuetum, and A. pseudogonyaulax were not. We also measured the bioluminescent intensity of A. affine, A. fraterculus, A. mediterraneum, A. ostenfeldii, A. pacificum, A. pohangense, A. tamarense, and A. tamutum. The mean 200-second-integrated bioluminescence intensity per cell ranged from 0.02 to 32.2 × 104 relative luminescence unit per cell (RLU cell-1), and the mean maximum bioluminescence intensity per cell per second (BLMax) ranged from 0.01 to 10.3 × 104 RLU cell-1 s-1. BLMax was significantly correlated with the maximum growth rates of Alexandrium species, except for A. tamarense. A phylogenetic tree based on large subunit ribosomal DNA (LSU rDNA) showed that the bioluminescent species A. affine, A. catenella, A. fraterculus, A. mediterraneum, A. pacificum, and A. tamarense formed a large clade. However, the toxicity or mixotrophic capability of these species was split. Thus, their bioluminescence capability in this clade was more consistent than their toxicity or mixotrophic capability. Phylogenetic trees based on LSU rDNA and the luciferase gene of Alexandrium were consistent except for A. pohangense. The results of the present study can provide a basis for understanding the interspecific diversity in bioluminescence of Alexandrium.

Characterizations of four freshwater amoebae including opportunistic pathogens newly recorded in the Republic of Korea

  • Hyeon Been Lee;Jong Soo Park
    • Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.118-133
    • /
    • 2023
  • Background: Free-living amoebae (FLA) are widely distributed in freshwater, seawater, soil, and extreme environments, and play a critical role as feeders on diverse preys in the ecosystem. Also, some FLA can become opportunistic pathogens in animals including humans. The taxa Amoebozoa and Heterolobosea are important amoeboid groups associated with human pathogens. However, the identification and habitat of amoebae belonging to Amoebozoa and Heterolobosea remain poorly reported in the Republic of Korea. This study highlights the first record for identification and source of four amoebae including putative pathogens in the Republic of Korea. Results: In the present study, four previously reported FLA were isolated from freshwaters in Sangju Gonggeomji Reservoir (strain GO001), one of the largest reservoirs during the Joseon Dynasty period, and along the Nakdong River, the largest river in the Republic of Korea (strains NR5-2, NR12-1, and NR14-1) for the first time. Microscopic observations and 18S rDNA phylogenetic trees revealed the four isolated strains to be Acanthamoeba polyphaga (strains NR5-2 and NR12-1), Tetramitus waccamawensis (strain GO001), and Naegleria australiensis (strain NR14-1). Strains NR5-2 and NR12-1 might be the same species and belonged to the morphological Group 2 and the T4 genotype of Acanthamoeba. Strain GO001 formed a clade with T. waccamawensis in 18S rDNA phylogeny, and showed morphological characteristics similar to previously recorded strains, although the species' flagellate form was not observed. Strain NR14-1 had the typical morphology of Naegleria and formed a strongly supported clade with previously recorded strains of N. australiensis in phylogenetic analysis of 18S rDNA sequences. Conclusions: On the bases of morphological and molecular analyses, four strains of FLA were newly observed and classified in the Republic of Korea. Three strains belonging to the two species (A. polyphaga and N. australiensis) isolated from the Nakdong River have the potential to act as opportunistic pathogens that can cause fatal diseases (i.e. granulomatous amoebic encephalitis, Acanthamoeba Keratitis, and meningoencephalitis) in animals including humans. The Nakdong River in the Republic of Korea may provide a habitat for potentially pathogenic amoebae, but additional research is required to confirm the true pathogenicity of these FLA now known in the Republic of Korea.

Phylogenetic Relationships of Jeju Dogs to Other Domestic and Foreign Dog Breeds Determined by Using mtDNA D-loop Sequences (mtDNA D-loop의 염기서열에 의한 제주견과 우리나라 재래견 및 외국견품종과의 유연관계)

  • Kim, Mi-Gyoung;Kim, Nam-Young;Lee, Sung-Soo;Kim, Ky-IL;Yang, Young-Hoon
    • Journal of Animal Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.303-310
    • /
    • 2011
  • Phylogenetic relationships of Jeju dogs to other domestic and foreign dog breeds were assessed using mtDNA D-loop sequences. Neighbor-joining trees were constructed using complete sequences (970 bp excluding the tandem repeat region) determined for five Cheju, four Jindo, four Sapsaree, five Pungsan, two of each East and West Laika dogs (Canis familiaris), two gray wolves (Canis lupus) and two coyotes (Canis latrans) and also published complete sequences for dogs. Coyote sequences were used as outgroups. In addition, a total of 214 haplotypes of 598bp D-loop sequences from 30 dog breeds were collected from GenBank and used to investigate genetic structure of population. In the analyses of full D-loop sequence variation and the phylogenetic trees constructed by neighbor-joining method, neither haplotypes nor clades specific for any domestic dog breeds were observed. The inter-species sequence variation (4.51%) between domestic dogs and wolves was much higher than the intra-species sequence variation within domestic dogs (1.63%) and wolves (3.64%). The divergence of the dog and wolf occurred approximately 1~2 million years ago based on these values. The taxa of Jeju dog breed in the phylogenetic tree are clustered separately and intermingled with other taxa of breeds, suggesting that active crossbreeding of Jeju dogs with other domestic breeds.