• Title/Summary/Keyword: photosynthesis experiment

Search Result 132, Processing Time 0.028 seconds

Physiological Effects of 2,4-Dichlorophenoxyacetic acid (2,4-D) on Chlorella ellipsoidea (Chlorella의 생리에 미치는 2,4-dichlorophenoxyacetic Acid의 영향)

  • 채인기;정영숙
    • Korean Journal of Microbiology
    • /
    • v.13 no.3
    • /
    • pp.101-108
    • /
    • 1975
  • Physiological effects of 2,4-D on the growth of Chlorella ellipsoidea were investigated culturing the alage in the MN4 media containing 0. $10^{-4}/M$ and $4<\times}10^{-4}M$ 2,4-D. During 6 days culture were taken to analysis with respect to overall growth, photosynthesis, respiration and chemical composition. Results obtained from the experiment were as follows : 1) The growth of chlorella was increased at $10^{-4}M$ and decreased at $4{\times}10^{-4}M$ of 2,4-D concentrations 2) At $10^{-4}M$ pf 2,4-D cpncentration, the activity of photosynthesis enhanced relative to contro. while at $4{\times}10^{-4}M$ it was not changed. In both concentrations, however, the rate of respiration was down from the control. 3) At $10^{-4}M$ 2,4-D, the concentration of carbondrate metabolites was not changed relative to control, while significant increase in the concentrations of proteins and nucleic acids was observed. On the other hand at $4{\times}10^{-4}M$ of 2,4-D concentrations, all the metabolites including carbohydrates, proteins and nucleic acids were descreased. 4) It is concluded that 2,4-D at $10^{-4}M$ concentration accelerates the growth of chlorella by promoting the activities of photosynthesis and biosynthesis of proteins and nucleic acids.

  • PDF

Effects of Shading on the Growth and Chlorophyll Fluorescence under Agrivoltaic System Conditions

  • Hoejeong Jeong;Myeong-Gue Choi;Woon-Ha Hwang
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.120-120
    • /
    • 2022
  • Agrivoltaic System (AVS) was introduced with the concept that it could generate electricity by using the extra light remain after crops use for photosynthesis in farm, which can earn additional income. However, crop yield was declined under the AVS condition due to the decrease in light energy. In the past, many researchers have been studied about crop states under shading conditions. However, the phenomenon of partial shading such as under the AVS is not well studied. In this study, to figure out the response of crop under the different light conditions, the electron transport rate (ETR) and non-photochemical quenching (NPQ) of rice was investigated using the chlorophyll fluorescence measurement. Also, physiological changes of crops under the shading conditions were investigated. The growth experiment under partial shading under AVS and overall shading which made of 35% shade cloth was conducted to understand the eco-physiological responses of rice to light in terms of the photosynthesis. Under the shading conditions, SPAD value and chlorophyll contents were higher, but the leaf thickness was lower than control. The overall shading condition show lower ETR than others during the growing season. In contrast, NPQ was higher than other treatments. This means the available light energy cannot contribute to photosynthesis under the shading condition.

  • PDF

Estimation of Void Fraction in the Seagrass (Zostera Marina) Bed Using Sound Speed Dispersion (음속 확산을 이용한 잘피(거머리말) 서식지의 기공률 추정)

  • La, Hyoung-Sul;Na, Jung-Yul;Lee, Sung-Mi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.33-39
    • /
    • 2008
  • Void fraction of air bubble in the seagrass bed by photosynthesis was estimated with sound speed dispersion. A field experiment was conducted at Seagrasss bed of which bottom type is sandy mud and 120 kHz CW waveform was transmitted to obtain backscattered signals from seagrass bed. The differences of the arrival time of received signal from seagrass bed were observed between day and night. The diurnal variation of arrival time was caused by sound speed dispersion of air bubble generated by photosynthesis of seagrass.

Interactions of nitrogen supplying level and elevated CO2 on Growth and Photosynthesis of Picea koraiensis Nakai seedlings

  • Wang Y.J.;Mao Z.J.;Park K.W.
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2004.11a
    • /
    • pp.139-143
    • /
    • 2004
  • To evaluate the biological and physiological response of Picea koraiensis Nakai to elevated $CO_2$ and nitrogen.3-year old seedlings were planted in an ambient and 700 ppm $CO_2$ at low (2mM $NH_4NO_3$) or high nitrogen (16mM $NH_4NO_3$) supplying treatments for 3 months. Photosynthetic parameters were measured monthly. Seedlings were harvested at monthly intervals and growth parameters of root system, stem and needle fractions were evaluated. The result showed that height of the seedlings grown at both of elevated $CO_2Xhigh$ nitrogen and elevated CO2×low nitrogen supplying treatments increased significantly more than that of at ambient CO2 treatments. Seedlings grown at elevated $CO_2Xhigh$ nitrogen produced more root biomass than at elevated $CO_2Xlow$ nitrogen and ambient $CO_2Xhigh$ nitrogen treatments. This result suggested that the root growth response of Picea koraiensis seedlings was greater in elevated $CO_2{\times}high$ nitrogen regime, which is very important for carbon sequestration in soil. $A_{max}$ of the seedlings grown at elevated $CO_2Xhigh$ nitrogen increased during the three months significantly, and $A_{max}$ of the seedlings grown at the other three treatments decreased significantly, suggesting that the interaction between elevated $CO_2$ and high nitrogen supplying stimulates the $A_{max}$ of Picea koraiensis. $A_{max}$ of the seedlings grown at elevated $CO_2Xlow$ nitrogen showed higher than other three treatments in the first month of the experiment, but decreased in succedent two months, suggesting that elevated $CO_2$ promotes the photosynthesis of the seedlings. However long term growth in elevated $CO_2Xlow$ nitrogen supplying condition resulted in an acclimatory decreased in leaf photosynthesis.

  • PDF

Effects Water Stress on Physiological Traits at Various Growth Stages of Rice

  • Choi, Weon-Young;Park, Hong-Kyu;Kang, Si-Yong;Kim, Sang-Su;Choi, Sun-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.282-287
    • /
    • 1999
  • The object of this study was to determine the difference of the time course changes of transpiration, diffusion resistance and photosynthetic rate of rice at several different growth stages subjected to soil moisture stress (SMS) and recovery by irrigation. A japonica rice cultivar 'Dongjinbyeo', was grown under flooded condition in a plastic container filled with silty loam soil. At 5 main growth stages, the container was treated by SMS until initial wilting point (IWP) and then reirrigated. The duration of SMS until IWP were the longest, 13 days for tillering stage, and the shortest, 7 days for panicle initiation and meiosis stage. The transpiration rate rapidly decreased during SMS and the transpiration rate at IWP of the stressed plant showed 10∼20% compared with control, and the transpiration rate of stressed plant at most growth stages also recovered rapidly after irrigation and then reached 100% of control within a week. The shoot photosynthetic rate in all growth stages rapidly decreased by SMS, and the rates at IWP of stressed plants were de-creased nearly to 0%, beside the treatment at tillering stage. The recovery degree of photosynthetic rate by irrigation ranged from 20 to 90%, showed higher at early growth stages of SMS treatment than that of later stages. At all growth stages the leaf diffusion resistance of stressed plants was over 3 times that of the control resulting from a rapid increase at 3 to 5 days after draining for SMS, and showed quick recovery by irrigation within 3 days after drainage. The above physiological parameters changed in close relation with the decrease of the soil matric potential after SMS. These results indicate that at all main growth stages of rice plants the transpiration and photosynthesis reduction by stomatal closure reponded sensitively to the first stage of SMS closely related with decrease of soil water potential, while those recovery pattern and recovered degree by irrigation are little different by growth stage of rice.

  • PDF

Comparative Analysis between Healthy and Powdery Mildew-infected Plants of Strawberry Cultivar Seolhyang (딸기 설향품종의 흰가루병 건전 및 감염식물 비교 분석)

  • Nam, Myeong-Hyeon;Jeon, Yi-Nae;Lee, Hee-Chul;Lee, He-Duck;Kang, Hee-Kyoung
    • Research in Plant Disease
    • /
    • v.18 no.2
    • /
    • pp.80-85
    • /
    • 2012
  • We examined the incidence of powdery mildew in strawberry cv. Seolhyang plants, and performed a comparative analysis on the temperature, photosynthesis rate, and nutrient content of healthy and powdery mildew-infected plants. Powdery mildew first infected the fruit of the strawberries in mid-January, and the disease severity increased in both fruits and leaves during the late harvest season. The rate of photosynthesis and leaf temperatures of healthy plants were higher than those of powdery mildew-infected leaves and significantly decreased with an increase in the disease severity. The healthy and powdery mildew-infected plants in the soil analysis were not significantly different in chemical compositions. The leaves of the healthy plants contained lower potassium and higher manganese and chlorophyll concentrations than the powdery mildew-infected plants. In particular, manganese was significantly higher in healthy leaves than in infected leaves. Therefore, the concentrations of potassium, manganese and chlorophyll in strawberry leaves may be an important factor for disease suppression.

Growth and Photosynthetic Characteristics of Atractylodes japonica by Light Controls and Leaf Mold Treatment in Forest Farming (임간재배 시 광조절과 부엽토 처리에 따른 삽주의 생육 및 광합성 특성)

  • Jeon, Kwon Seok;Song, Ki Seon;Choi, Kyu Seong;Kim, Chang Hwan;Park, Yong Bae;Kim, Jong Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.2
    • /
    • pp.161-167
    • /
    • 2015
  • This study was carried out to determine the effects of light controls and leaf mold on root growth and physiological responses of Atractylodes japonica growing in forest farming. The experiment was performed by light controls (100%, 62.5%, 40.3% and 19.7% of full sunlight) and application of leaf mold to soil. Height, stem diameter, number of flower buds and root collar diameter were the highest in leaf mold within 62.5% of full sunlight (relative light intensity 62.5%). And these were the higher in leaf mold within each light level. As the shading level increased, light saturation point and maximum photosynthesis rate decreased. As the light level decreased, SPAD value increased in control and leaf mold. As a result of surveying the whole experiment, A. japonica was judged worse root growth under the lower light level. It was concluded that the light level was one of the most important factors to produce A. japonica. Also, producing high-quality of A. japonica with the price competitiveness by using leaf mold like the experiment can be an effective way to increase incomes for farmers.

Effects of varying CO2, Nutrient and Light Irradiance Levels on the Growth of Ulva australis at Germling, Juvenile, and Adult Stages (해수의 CO2와 영양염 농도 및 조도가 구멍갈파래(Ulva australis) 배아, 유엽과 성체의 생장에 미치는 영향)

  • Jeon, Da Vine;Na, Yeon Ju;Yu, Ok Hwan;Choi, Han Gil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.1
    • /
    • pp.96-103
    • /
    • 2015
  • The effects of $CO_2$ concentration, nutrient levels, and irradiance on the growth of germlings and juveniles, and on the photosynthesis of adults were examined in a green tide alga, Ulva australis. We used a factorial experimental design with two $CO_2$ concentrations (380 and 750 ppm), two nutrient levels (control and PES medium), and two irradiance levels (50 and $100{\mu}mol$ photons $m^{-2}s^{-1}$). Germlings grew best ($664.15{\pm}61.45{\mu}m$ in length) under conditions of 750 ppm, PES, and $100{\mu}mol$ photons $m^{-2}s^{-1}$ after 10 days in culture. Relative growth rates (RGR) of the juveniles were greatest (4.41% $day^{-1}$) under conditions of 750 ppm, PES, and $50{\mu}mol$ photons $m^{-2}s^{-1}$ after 5 days in culture. Photosynthetic efficiency ($F_v/F_m$) of the adult discs was $0.73{\pm}0.05$ before the experiment and reached a maximum ($0.83{\pm}0.01$) under conditions of 750 ppm, control, and $50{\mu}mol$ photons $m^{-2}s^{-1}$ after 5 days in culture. Growth (germlings and juveniles) and photosynthesis (adult discs) of Ulva australis increased when $CO_2$ levels were 750 ppm. Additionally, the optimal irradiance for growth and photosynthesis differed among stages, wherein germlings grew best at $100{\mu}mol$ photons $m^{-2}s^{-1}$, juveniles grew best at $50{\mu}mol$ photons $m^{-2}s^{-1}$, and adults photosynthesized most at $50{\mu}mol$ photons $m^{-2}s^{-1}$. The performance of Ulva australis at all examined life stages was enhanced under the PES nutrient treatment. In conclusion, the physiological responses of U. australis to varying $CO_2$, nutrient, and irradiance levels differed slightly among life stages. However, growth and photosynthesis always increased with elevated $CO_2$ and nutrient concentrations. These results indicate that U. australis green tide blooms might occur more frequently in coastal areas if $CO_2$ and nutrient concentrations increase.

The Influence of Hydrogen Peroxide Treatment on Water Stress, Photosynthesis and Thermotolerance of Cucumber(Cucumis sativus) in Greenhouse Cultivation during Summer (Hydrogen Peroxide 처리가 여름철 시설오이의 수분 스트레스, 광합성, 내서성에 미치는 영향)

  • Woo Young-Hoe;Kim Hyung-Jun;Kim Tae-Young;Kim Ki-Deog;Huh Yun-Chan;Chun Hee;Cho Ill-Hwan;Nam Yooun-Il;Ko Kwan-Dal;Lee Kwan-Ho;Hong Kue-Hyon
    • Journal of Bio-Environment Control
    • /
    • v.15 no.1
    • /
    • pp.47-52
    • /
    • 2006
  • This studies were carried out in summer season to increase high temperature tolerance using hydrogen peroxide treatments on cucumber in greenhouse. The water stress of cucumber in greenhouse by the hydrogen peroxide treatments showed as control>250 mM>500 mM treatments in order. The photosynthesis rate of cucumber at $30^{\circ}C$ did not show difference with each hydrogen peroxide treatment in temperature controlled greenhouse. However, the photosynthesis rate of cucumber in the control and hydrogen peroxide treatments at $40^{\circ}C$ was significantly different. The photosynthesis rate of cucumber in combined treatment with 1,000 $mg{\cdot}L^{-1}\;CO_2$ supply and hydrogen peroxide was also higher than control, however, there was no different of photosynthesis in 250 mM and 500 mM treatment. The value of $F_v/F_m$ and $F_m/F_o$ of chlorophyll fluorescent in 500 mM hydrogen peroxide treatment at $40^{\circ}C$ was highest. Also the activity of POD, the antioxidant enzyme, was higher with high hydrogen peroxide concentration than the other treatments. The high temperature limits for growth were $43^{\circ}C$ in the control, $44^{\circ}C$ in the 250 mM and $46^{\circ}C$ in the 500 mM according to analyze chlorophyll fluorescent $F_o$. The high temperature tolerance in cucumber increased approximately $3^{\circ}C$ by the hydrogen peroxide treatments under this experiment conditions.

Photosynthesis Monitoring of Rice using SPAR System to Respond to Climate Change

  • Hyeonsoo Jang;Wan-Gyu Sang;Yun-Ho Lee;Hui-woo Lee;Pyeong Shin;Dae-Uk Kim;Jin-Hui Ryu;Jong-Tag Youn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.169-169
    • /
    • 2022
  • Over the past 100 years, the global average temperature has risen by 0.75 ℃. The Korean Peninsula has risen by 1.8 ℃, more than twice the global average. According to the RCP 8.5 scenario, the CO2 concentration in 2100 will be 940 ppm, about twice as high as current. The National Institute of Crop Science(NICS) is using the SPAR (Soil-Plant Atmosphere Research) facility that can precisely control the environment, such as temperature, humidity, and CO2. A Python-based colony photosynthesis algorithm has been developed, and the carbon and nitrogen absorption rate of rice is evaluated by setting climate change conditions. In this experiment, Oryza Sativa cv. Shindongjin were planted at the SPAR facility on June 10 and cultivated according to the standard cultivation method. The temperature and CO2 settings are high temperature and high CO2 (current temperature+4.7℃ temperature+4.7℃·CO2 800ppm), high temperature single condition (current temperature+4.7℃·CO2 400ppm) according to the RCP8.5 scenario, Current climate is set as (current temperature·CO2400ppm). For colony photosynthesis measurement, a LI-820 CO2 sensor was installed in each chamber for setting the CO2 concentration and for measuring photosynthesis, respectively. The colony photosynthetic rate in the booting stage was greatest in a high temperature and CO2 environment, and the higher the nitrogen fertilization level, the higher the colony photosynthetic rate tends to be. The amount of photosynthesis tended to decrease under high temperature. In the high temperature and high CO2 environment, seed yields, the number of an ear, and 1000 seed weights tended to decrease compared to the current climate. The number of an ear also decreased under the high temperature. But yield tended to increase a little bit under the high temperature and high CO2 condition than under the high temperature. In addition, In addition to this study, it seems necessary to comprehensively consider the relationship between colony photosynthetic ability, metabolite reaction, and rice yield according to climate change.

  • PDF