• Title/Summary/Keyword: photon

Search Result 1,975, Processing Time 0.022 seconds

The Photon Energy Characteristics of ZnO Thin Film Fabricated by RF Sputtering (RF Sputtering으로 제작한 ZnO 박막의 Photon Energy 특성)

  • Kim, Byung-In;Kim, Won-Bae;Chung, Seong-Gyo;Kim, Duck-Tae;Choi, Young-Il;Kim, Hyung-Gon;Song, Chan-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.73-79
    • /
    • 2002
  • This study evaporates ZnO layer thickness' differently with RF sputtering method on Si Wafer(n-100). This study is performed to examine the characteristics of photon energy and dielectric loss according to the thickness of ZnO and increase the reliability and reproduction of ZnO thin film. It is confirmed that the variation of electric Permittivity by frequency is resulted from the formation of particles within thin film, the particle size and the polarization on grain boundary. Peak of electric Permittivity value of thin film has slower and less value in early low wavelength by the coulomb force involved in carrier combination according to the increase of frequency. Reversal of electric Permittivity values is induced by dipole polarization shown in the dielectric of thin film. Complex electric constant $({\varepsilon}_1,{\varepsilon}_2)$ has larger peak values as it's thickness is thinner and then it is larger according to the increase of frequency. Electric Permittivity by photon energy has large value in imaginary number and is reduced exponentially by the increase of carrier density according to that of photon energy.

  • PDF

Cancer Treatment Using Multiphoton Photodynamic Therapy

  • Zakir Hossain, S.M.;Golam Azam, S.M.;Enayetul Babar, S.M.
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • Photodynamic therapy (PDT), a newly established treatment for solid tumors, involves the systemic administration of a tumor localizing photosensitizer that is only activated when exposed to light of appropriate wavelength. Photoactivation of photosensitizer in the presence of oxygen results in the formation of highly cytotoxic molecular species, which precipitates necrosis. PDT has now become a promising means for the treatment of cancer due to its specificity, relatively minimal side effects, and inexpensive. However, the application of PDT has been restricted to the treatment of superficial lesions or the use of interstitial light delivery. A single photon generally activates the photochemical reaction in traditional PDT. However the use of multi photon excitation, where two or more photons simultaneously excite a photosensitizer, allows for the use of wavelengths twice as long. Such wavelengths exhibit better transmittance through tissue and thereby deeper penetration is achieved. This paper will review theoretical principles of multi photon excitation, challenges associated with multi photon PDT and update the current and future role of multi photon PDT in cancer.

Photon-counting linear discriminant analysis for face recognition at a distance

  • Yeom, Seok-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.250-255
    • /
    • 2012
  • Face recognition has wide applications in security and surveillance systems as well as in robot vision and machine interfaces. Conventional challenges in face recognition include pose, illumination, and expression, and face recognition at a distance involves additional challenges because long-distance images are often degraded due to poor focusing and motion blurring. This study investigates the effectiveness of applying photon-counting linear discriminant analysis (Pc-LDA) to face recognition in harsh environments. A related technique, Fisher linear discriminant analysis, has been found to be optimal, but it often suffers from the singularity problem because the number of available training images is generally much smaller than the number of pixels. Pc-LDA, on the other hand, realizes the Fisher criterion in high-dimensional space without any dimensionality reduction. Therefore, it provides more invariant solutions to image recognition under distortion and degradation. Two decision rules are employed: one is based on Euclidean distance; the other, on normalized correlation. In the experiments, the asymptotic equivalence of the photon-counting method to the Fisher method is verified with simulated data. Degraded facial images are employed to demonstrate the robustness of the photon-counting classifier in harsh environments. Four types of blurring point spread functions are applied to the test images in order to simulate long-distance acquisition. The results are compared with those of conventional Eigen face and Fisher face methods. The results indicate that Pc-LDA is better than conventional facial recognition techniques.

Extensive investigations of photon interaction properties for ZnxTe100- x alloys

  • Singh, Harinder;Sharma, Jeewan;Singh, Tejbir
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1364-1371
    • /
    • 2018
  • An extensive investigation of photon interaction properties has been made for $Zn_xTe_{100-x}$ alloys (where x = 5, 20, 30, 40, 50) to explore its possible use in sensing and shielding gamma radiations. The results show better and stable response of ZnTe alloys for various photon interaction properties over the wide energy range, with an additional benefit of ease in fabrication due to lower melting points of Zn and Te. Mass attenuation coefficient values show strong dependence on photon energy as well as composition. Effective atomic number has maximum value for $Zn_5Te_{95}$ and lowest for $Zn_{50}Te_{50}$ in the entire energy region. The alloy sample with maximum $Z_{eff}$ shows minimal value of $N_e$ and vice versa. Mean free path follows inverse trend as observed for mass attenuation coefficient. The exposure and energy absorption buildup factors depend upon photon energy, penetration thickness and composition (effective atomic number) of $Zn_xTe_{100-x}$ alloys. It finds its application for sensing and shielding from highly energetic and highly penetrating photons at sites where radioactive materials were used and visibility of material is not a big constraint. Further, energy down conversion property of ZnTe alloys with subsequent emission in green band suggests its potential use in sensing gamma photons.

On-the-fly energy release per fission model in STREAM with explicit neutron and photon heating

  • Nhan Nguyen Trong Mai;Woonghee Lee;Kyeongwon Kim;Bamidele Ebiwonjumi;Wonkyeong Kim;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1071-1083
    • /
    • 2023
  • The on-the-fly energy release per fission (OTFK) model is implemented in STREAM to continuously update the Kappa values during the depletion calculation. The explicit neutron and photon energy distribution, which has not been considered in previous STREAM versions, is incorporated into the existing on-the-fly model. The impacts of the modified OTFK model with explicit neutron and photon heating in STREAM on the power distribution, fuel temperature, and other core parameters during depletion with feedback calculations are studied using several problems from the VERA benchmark suit. Overall, the explicit heating calculation provides a better power map for the feedback calculations particularly when strong gamma emitters are present. Generally, the fuel temperature decreases when neutron and photon heating is employed because fission neutrons and gamma rays are transported away from their points of generation. This energy release model in STREAM indicates that gamma energy accounts for approximately 9.5%-10% of the total energy released, and approximately 2.4%-2.6% of the total energy released will be deposited in the coolant for the VERA 5, NuScale, and Yonggwang Unit 3 2D cores.

Photon-Counting Detector CT: Key Points Radiologists Should Know

  • Andrea Esquivel;Andrea Ferrero;Achille Mileto;Francis Baffour;Kelly Horst;Prabhakar Shantha Rajiah;Akitoshi Inoue;Shuai Leng;Cynthia McCollough;Joel G. Fletcher
    • Korean Journal of Radiology
    • /
    • v.23 no.9
    • /
    • pp.854-865
    • /
    • 2022
  • Photon-counting detector (PCD) CT is a new CT technology utilizing a direct conversion X-ray detector, where incident X-ray photon energies are directly recorded as electronical signals. The design of the photon-counting detector itself facilitates improvements in spatial resolution (via smaller detector pixel design) and iodine signal (via count weighting) while still permitting multi-energy imaging. PCD-CT can eliminate electronic noise and reduce artifacts due to the use of energy thresholds. Improved dose efficiency is important for low dose CT and pediatric imaging. The ultra-high spatial resolution of PCD-CT design permits lower dose scanning for all body regions and is particularly helpful in identifying important imaging findings in thoracic and musculoskeletal CT. Improved iodine signal may be helpful for low contrast tasks in abdominal imaging. Virtual monoenergetic images and material classification will assist with numerous diagnostic tasks in abdominal, musculoskeletal, and cardiovascular imaging. Dual-source PCD-CT permits multi-energy CT images of the heart and coronary arteries at high temporal resolution. In this special review article, we review the clinical benefits of this technology across a wide variety of radiological subspecialties.

Comparison of the standards for absorbed dose to water of the IAEA and the KRISS, Korea in accelerator photon beams

  • L. Czap;I.J. Kim;J.I. Park;C.-Y. Yi;Y. Kim;Z. Msimang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2698-2703
    • /
    • 2024
  • A bilateral comparison was conducted between the International Atomic Energy Agency (IAEA) and the Korea Research Institute of Standards and Science (KRISS) to measure the absorbed dose to water in accelerator photon beams. KRISS served as a linking laboratory to compare the IAEA standard with the key comparison reference value (KCRV) of the BIPM.RI(I)-K6 program, in which KRISS participated in 2017. Two ionization chambers from the IAEA were used as transfer instruments for the comparison. Both laboratories measured the calibration coefficients of these instruments and calculated the ratios. The ratio of the KRISS standard to the KCRV was applied to obtain the degree of equivalence of the IAEA, along with its uncertainty. The largest deviation of the IAEA measurement from the KCRV was 3.4 mGy/Gy, significantly smaller than the expanded uncertainty of 10.7 mGy/Gy (k = 2, 95% level of confidence). This study demonstrates the equivalence of IAEA's measurement standard for accelerator photon beams to other primary standard dosimetry laboratories. It provides evidence for the satisfactory operation of IAEA's quality management system and enhances the international credibility of the IAEA SSDL network, particularly in high-energy accelerator photon beams from linear accelerators.

Robust Planning of Intensity-modulated Proton Therapy for Prostate Cancer (전립선암 치료를 위한 세기조절 양성자 로버스트 치료계획)

  • Park, Su Yeon;Kim, Jong Sik;Park, Ju Young;Park, Won;Ju, Sang Gyu
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.25-31
    • /
    • 2013
  • Purpose: The aim of this study is to evaluate the dosimetric properties of robust planning strategy for plain intensity-modulated proton therapy (IMPT) taking into account of the uncertainties of effective proton range and set up error as compared to photon intensity-modulated radiation therapy (photon-IMRT) in prostate cancer treatment. Materials and Methods: The photon-IMRT (7 beams, step & shoot), plain-IMPT (2, 4, and 7 portals), and robust- IMPT plans, which was recalculated the plain-IMPT based on the uncertainties of range error (${\pm}5%$) and set up error (0.5 cm), were evaluated for five prostate cancer patients prescribed by 70 Gy/35 fractions. To quantitatively evaluate the dose distributions, several parameters such as maximum dose, minimum dose, mean dose, conformity index (CI), and homogeneity index (HI) for PTV as well as dose-volume index of VxGy for OARs were calculated from dose-volume histograms. Results: Robust-IMPT showed superior dose distributios in the PTV and OARs as compared to plain-IMPT and photon-IMRT. Like plain-IMPT, robust-IMPT were resulted in dose fluctuation around OARs, while better homogeneity and conformity in PTVs and lower mean dose in OARs as compared to photon-IMRT. Conclusion: In consideration with the effective range correction and set up movement using robustness in IMPT plan, the dosimetric uncertainties from plain-IMPT could substantially reduce and suggest more effective solutions than photon-IMRT in prostate cancer treatment.

  • PDF

Optical Characterization of Superconducting Strip Photon Detector Using $MgB_2$

  • Shibata, H.
    • Progress in Superconductivity
    • /
    • v.14 no.2
    • /
    • pp.96-98
    • /
    • 2012
  • Bias current dependence of a superconducting strip photon detector is studied in the wavelength range of 405 to 1310 nm. The detector is made of an $MgB_2$ meander pattern with the line width of 135 nm and thickness of 10 nm. At 1310 nm, the detection efficiency exponentially decreases as the bias current decreases. While at 405 nm, the detection efficiency almost saturates in the high bias current region. These features suggest that the intrinsic detection efficiency of the $MgB_2$ detector is high at 405 nm.