• Title/Summary/Keyword: photocatalytic treatment

Search Result 193, Processing Time 0.023 seconds

PHOTOCATALYTIC ANTIEUNGAL ACTIVITY AGAINST CANDIDA ALBICANS BY $TiO_2$ COATED ACRYLIC RESIN DENTURE BASE

  • Yang Ji-Yeon;Kim Hee-Jung;Chung Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.3
    • /
    • pp.284-294
    • /
    • 2006
  • Statement of problem. Proliferation of Candida albicans is primarily within the plaque on the fitting surface of the denture rather than on the inflamed mucosa. Consequently, the treatment of the denture is equally important as treatment of the tissue. Cleansing and disinfection should be efficiently carried-out as the organisms can penetrate into the voids of the acrylic resin and grow in them, from which they can continue to infect and reinfect bearing tissues. Purpose. The purpose of this study was to evaluate the applicability of photocatalytic reaction to eliminate Candida albicans from acrylic resin denture base, and to investigate the anti-fungal effect with various UVA illumination time. Materials and Methods. The specimens were cured by the conventional method following the manufacturer's instruction using thermal polymerized denture base resin (Vertex RS: Dentimex, Netherlands). $TiO_2$ photocatalyst sol(LT), which is able to be coated at normal temperature, was made from the Ti-alkoxide progenitor. The XRD patterns, TEM images and nitrogen absorption ability of the $TiO_2$ photocatalyst sol(LT) were compared with the commercial $TiO_2$ photocatalyst P-25. The experimental specimens were coated with the mixture of the $TiO_2$ photocatalyst sol(LT) and binder material (silane) using dip-coater, and uncoated resin plates were used as the control group. Crystallinity of $TiO_2$ of the specimen was tested by the XRD. Size, shape and chemical compositions were also analyzed using the FE-SEM/ EDS. The angle and methylene blue degradation efsciency were measured for evaluating the photocatalytic activity of the $TiO_2$ film. Finally, the antifungal activity of the specimen was tested. Candida albicans KCTC 7629(1 ml, initial concentration $10^5$ cells/ ml) were applied to the experiment and control group specimens and subsequently two UVA light source with 10W, 353 nm peak emission were illuminated to the specimens from 15cm above. The extracted $2{\mu}l$ of sample was plated on nutrient agar plate ($Bacto^{TM}$ Brain Heart Infusion; BD, USA) with 10 minute intervals for 120 minute, respectively. It was incubated for 24 hours at $37^{\circ}C$ and the colony forming units (CFUs) were then counted. Results. Compared the characteristics of LT photocatalyst with commercial P-25 photocatalyst, LT were shown higher activity than P-25. The LT coated experimental specimen surface had anatase crystal form, less than 20 nm of particle size and wide specific surface area. To evaluate the photocatalytic activity of specimens, methylene blue degradation reaction were used and about 5% of degradation rate were measured after 2 hours. The average contact angle was less than $20^{\circ}$ indicating that the LT photocatalyst had hydrophilicity. In the antifungal activity test for Candida albicans, 0% survival rate were measured within 30 minute after irradiation of UVA light. Conclusion. From the results reported above, it is concluded that the UVA-LT photocatalytic reaction have an antifungal effect on the denture surface Candida albicans, and so that could be applicable to the clinical use as a cleaning method.

Effects of Calcination Temperature on Ti02 Photocatalytic Activities (TiO2 광촉매 활성에서 소성온도의 영향)

  • Kim Seung-Min;Yun Tae-Kwan;Hong Dae-Ii
    • Journal of Environmental Science International
    • /
    • v.14 no.9
    • /
    • pp.889-896
    • /
    • 2005
  • The nanosized $TiO_2$ photocatalysts were prepared by the hydrolysis of $TiCl_4$ and calcined at different temperatures. The resulting materials were characterized by TGA, DSC, XRD, and TEM testing techniques. XRD, TEM, and BET measurements indicated that the particle size of $TiO_2$ was increased with rise of calcination temperature and surface area was decreased with rise of it. The prepared $TiO_2$ photocatalysts were used for the photocatalytic degradation of congo red. The effects of calcination temperature, $TiO_2$ loading, the initial concentration of congo red, and usage frequencies were investigated and the rate constants were determined by regressing the experimental data. Calcination is an effective treatment to increase the photo activity of nanosized $TiO_2$ photocatalysts resulting from the improvement of crystallinity. The optimum calcination temperature of the catalyst for the efficient degradation of congo red was found to be $400^{\cric}C$. The rate constant was decreased with increase in the initial concentration of congo red and increased with increase in the $TiO_2$ loading. In the case of $TiO_2$ photocatalysts, the photocatalytic activity wasn't greatly affected by the usage frequencies.

Sequential adsorption - photocatalytic oxidation process for wastewater treatment using a composite material TiO2/activated carbon

  • Andriantsiferana, Caroline;Mohamed, Elham Farouk;Delmas, Henri
    • Environmental Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.181-189
    • /
    • 2015
  • A composite material was tested to eliminate phenol in aqueous solution combining adsorption on activated carbon and photocatalysis with $TiO_2$ in two different ways. A first implementation involved a sequential process with a loop reactor. The aim was to reuse this material as adsorbent several times with in situ photocatalytic regeneration. This process alternated a step of adsorption in the dark and a step of photocatalytic oxidation under UV irradiation with or without $H_2O_2$. Without $H_2O_2$, the composite material was poorly regenerated due to the accumulation of phenol and intermediates in the solution and on $TiO_2$ particles. In presence of $H_2O_2$, the regeneration of the composite material was clearly enhanced. After five consecutive adsorption runs, the amount of eliminated phenol was twice the maximum adsorption capacity. The phenol degradation could be described by a pseudo first-order kinetic model where constants were much higher with $H_2O_2$ (about tenfold) due to additional ${\bullet}OH$ radicals. The second implementation was in a continuous process as with a fixed bed reactor where adsorption and photocatalysis occurred simultaneously. The results were promising as a steady state was reached indicating stabilized behavior for both adsorption and photocatalysis.

Optimization of photo-catalytic degradation of oil refinery wastewater using Box-Behnken design

  • Tetteh, Emmanuel Kweinor;Naidoo, Dushen Bisetty;Rathilal, Sudesh
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.711-717
    • /
    • 2019
  • The application of advanced oxidation for the treatment of oil refinery wastewater under UV radiation by using nanoparticles of titanium dioxide was investigated. Synthetic wastewater prepared from phenol crystals; Power Glide SAE40 motor vehicle oil and water was used. Response surface methodology (RSM) based on the Box-Behnken design was employed to design the experimental runs, optimize and study the interaction effects of the operating parameters including catalyst concentration, run time and airflow rate to maximize the degradation of oil (SOG) and phenol. The analysis of variance and the response models developed were used to evaluate the data obtained at a 95% confidence level. The use of the RSM demonstrated the graphical relationship that exists between individual factors and their interactive effects on the response, as compared to the one factor at time approach. The obtained optimum conditions of photocatalytic degradation are the catalyst concentration of 2 g/L, the run time of 30 min and the airflow rate of 1.04 L/min. Under the optimum conditions, a 68% desirability performance was obtained, representing 81% and 66% of SOG and phenol degradability, respectively. Thus, the hydrocarbon oils were readily degradable, while the phenols were more resistant to photocatalytic degradation.

Effect of Oxygen Vacancies on Photocatalytic Efficiency of TiO2 Nanotubes Aggregation

  • Liu, Feila;Lu, Lu;Xiao, Peng;He, Huichao;Qiao, Lei;Zhang, Yunhuai
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2255-2259
    • /
    • 2012
  • Aggregation of titania nanotubes (TNTs) fabricated by hydrothermal method were calcined in air and dry nitrogen; Changes in morphology and crystallinity of the nanotubes were studied by means of TEM, EDX, and XPS. EDX patterns and XPS spectra proved that there were a certain densities of oxygen vacancies in TNTs annealed in $N_2$. The photocatalysis experiments revealed TNTs/$N_2$ possesses significantly higher photocatalytic efficiency than TNTs annealed in dry air to degrade methylene blue. The correlation between oxygen vacancies and photocatalytic property may be attributed to: 1) oxygen vacancies might have affected results on water molecules adsorption and increase of the hydroxyl concentration; and 2) oxygen vacancies resulted in some changes in electronic structure of TNTs/$N_2$ aggregation and Fermi level extends into the conducting band.

Photocatalytic degradation of organic compounds by 2-ethylimidazole-treated titania under visible light illumination

  • Seo, Jiwon;Jeong, Junyoung;Lee, Changha
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.223-229
    • /
    • 2019
  • Titania modified by 2-ethylimidazole (2-EI) (denoted as $2-EI-TiO_2$) demonstrated visible light photocatalytic activity for the degradation of organic compounds. $2-EI-TiO_2$ was a bright brown powder that exhibited similar crystallinity and morphology with the control $TiO_2$. A diffuse reflectance spectrum indicated that $2-EI-TiO_2$ absorbs visible light of all wavelengths. X-ray photoelectron spectroscopy (XPS) confirmed the cationic state of nitrogen species (e.g. Ti-O-N) on the surface of $2-EI-TiO_2$. Visible light-illuminated $2-EI-TiO_2$ degraded $10{\mu}M$ 4-chlorophenol (4-CP) by approximately 85% in 4 h. The photochemical activity of $2-EI-TiO_2$ was selective in targeting the organic compound. The repeated use of $2-EI-TiO_2$ decreased the photocatalytic activity for the 4-CP degradation. Experiments using radical scavengers and oxidant probes revealed that the oxidation by photogenerated holes is responsible for the degradation of organic compounds by illuminated $2-EI-TiO_2$ and the role of $^{\bullet}OH$ is negligible.

A Study on the Treatment of Swine Wastewater Using Titanium Dioxide Prepared by Hydrothermal Method (수열합성법으로 제조된 이산화티탄에 의한 축산폐수 처리에 관한 연구)

  • Yang, Jin-Seop;jung, Won Young;Baek, Seung Hee;Lee, Gun Dae;Park, Seong Soo;Hong, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.148-154
    • /
    • 2007
  • This study was performed to evaluate the application of $TiO_2$ on the photocatalytic treatment of swine wastewater. $TiO_2$ sol was prepared by hydrothermal method with the agent ratio($(C_2H_5)_2NH_2\;mol/Ti(OC_3H_7)_4\;mol)=1$ and R ratio ($H_2O\;mol/Ti(OC_3H_7)_4\;mol)=42$. The effect of parameter on the removal efficiency of swine wastewater in a batch type immobilized photocatalyst system such as initial pH, intensity of UV, dosage of $TiO_2$, air flow rate, and concentration of $H_2O_2$ was examined. Wastewater was effectively eliminated in the presence of both UV light illumination and $TiO_2$. Photocatalytic activity was higher in acidic condition compared to neutral and alkaline conditions. In addition, photocatalytic activity increased with increasing UV light intensity, dosage of $TiO_2$, the flow rate of air and the amount of $H_2O_2$ added as an oxidant, but the excess amount of $H_2O_2$ dosage decreased the removal efficiency.

Development of Visible-light Responsive $TiO_2$ Thin Film Photocatalysts by Magnetron Sputtering Method and Their Applications as Green Chemistry Materials

  • Matsuoka, Masaya
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.3.1-3.1
    • /
    • 2010
  • Water splitting reaction using photocatalysts is of great interest in the utilization of solar energy [1]. In the present work, visible light-responsive $TiO_2$ thin films (Vis-$TiO_2$) were prepared by a radio frequency magnetron sputtering (RF-MS) deposition method and applied for the separate evolution of $H_2$ and $O_2$ from water as well as the photofuel cell. Special attentions will be focused on the effect of HF treatment of Vis-$TiO_2$ thin films on their photocatalytic activities. Vis-$TiO_2$ thin films were prepared by an RF-MS method using a calcined $TiO_2$ plate and Ar as the sputtering gas. The Vis-$TiO_2$ thin films were then deposited on the Ti foil substrate with the substrate temperature at 873 K (Vis-$TiO_2$/Ti). Vis-$TiO_2$/Ti thin films were immersed in a 0.045 vol% HF solution at room temperature. The effect of HF treatments on the activity of Vis-$TiO_2$/Ti thin films for the photocatalytic water splitting reaction have been investigated. Vis-$TiO_2$/Ti thin films treated with HF solution (HF-Vis-$TiO_2$/Ti) exhibited remarkable enhancement in the photocatalytic activity for $H_2$ evolution from a methanol aqueous solution as well as in the photoelectrochemical performance under visible light irradiation as compared with the untreated Vis-$TiO_2$/Ti thin films. Moreover, Pt-loaded HF-Vis-$TiO_2$/Ti thin films act as efficient and stable photocatalysts for the separate evolution of $H_2$ and $O_2$ from water under visible light irradiation in the presence of chemical bias. Thus, HF treatment was found to be an effective way to improve the photocatalytic activity of Vis-$TiO_2$/Ti thin films. Furthermore, unique separate type photofuel cell was fabricated using a Vis-$TiO_2$ thin film as an electrode, which can generate electrical power under solar light irradiation by using various kinds of biomass derivatives as fuel. It was found that the introduction of an iodine ($I^-/{I_3}^-$) redox solution at the cathode side enables the development of a highly efficient photofuel cell which can utilize a cost-efficient carbon electrode as an alternative to the Pt cathode.

  • PDF

Treatment of highly concentrated organic wastewater by high efficiency $UV/TiO_{2}$ photocatalytic system (고효율 자외선/광촉매 시스템을 이용만 고농도 유기성 폐수처리)

  • Kim, Jung-Kon;Jung, Hyo-Ki;Son, Joo-Young;Kim, Si-Wouk
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.83-89
    • /
    • 2008
  • Food wastewater derived from the three-stage methane fermentation system developed in this lab contained high concentration organic substances. The organic wastewater should be treated through advanced wastewater treatment system to satisfy the "Permissible Pollutant Discharge Standard of Korea". In order to treat the organic wastewater efficiently, several optimum operation conditions of a modified $UV/TiO_{2}$ photocatalytic system have been investigated. In the first process, wastewater was pre-treated with $FeCl_{3}$. The optimum pH and coagulant concentration were 4.0 and 2000mg/L, respectively. Through this process, 52.6% of CODcr was removed. The second process was $UV-TiO_{2}$ photocatalytic reaction. The optimum operation conditions for the system were as follows: UV lamp wavelength, 254 nm; wastewater temperature, $40^{\circ}C$; pH 8.0; and air flow rate, 40L/min, respectively. Through the above two combined processes, 69.7% of T-N and 70.9% of CODcr contained in the wastewater were removed.

Photocatalytic effect for the carbon-coated TiO2 prepared from different heat treatment temperature (열처리 온도에 따라 제조된 탄소 코팅된 TiO2에 대한 광촉매 효과)

  • Chen, Ming-Liang;Bae, Jang-Soon;Oh, Won-Chun
    • Analytical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.460-467
    • /
    • 2006
  • Carbon-coated $TiO_2$ was prepared by $CCl_4$ solvent mixing method with different heat treatment temperature (HTT). Since the carbon layers derived from pitch on the $TiO_2$ particles were porous, the carbon-coated $TiO_2$ sample series showed a good adsorptivity and photo decomposition activity. The BET surface area was decreased by the increasing of the heat treatment temperature. The SEM results present to the characterization of surface texture on the carbon-coated $TiO_2$ sample and carbon distributions on the surfaces for all the materials used. The main elements of C, O and Ti were shown from EDX spectra. And the quantity of these elements is very rich in the samples. From XRD data, the pristine anatase peaks were observed in the X-ray diffraction patterns for the carbon-coated $TiO_2$ at the different HTTs. However, the rutile peaks were observed for the carbon-coated $TiO_2$ at HTT of 1073 K and 1123 K. Finally, the excellent photocatalytic activity of carbon-coated $TiO_2$ with UV-vis spectra between absorbance and time could be attributed to the homogeneous coated carbon on the external surface and structural phase transform, and the photocatalytic activity was decreased by the increasing of the HTT.