DOI QR코드

DOI QR Code

Photocatalytic degradation of organic compounds by 2-ethylimidazole-treated titania under visible light illumination

  • Seo, Jiwon (School of Chemical and Biological Engineering, Institute of Engineering Research, Seoul National University) ;
  • Jeong, Junyoung (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Lee, Changha (School of Chemical and Biological Engineering, Institute of Engineering Research, Seoul National University)
  • Received : 2018.10.01
  • Accepted : 2018.12.17
  • Published : 2019.05.25

Abstract

Titania modified by 2-ethylimidazole (2-EI) (denoted as $2-EI-TiO_2$) demonstrated visible light photocatalytic activity for the degradation of organic compounds. $2-EI-TiO_2$ was a bright brown powder that exhibited similar crystallinity and morphology with the control $TiO_2$. A diffuse reflectance spectrum indicated that $2-EI-TiO_2$ absorbs visible light of all wavelengths. X-ray photoelectron spectroscopy (XPS) confirmed the cationic state of nitrogen species (e.g. Ti-O-N) on the surface of $2-EI-TiO_2$. Visible light-illuminated $2-EI-TiO_2$ degraded $10{\mu}M$ 4-chlorophenol (4-CP) by approximately 85% in 4 h. The photochemical activity of $2-EI-TiO_2$ was selective in targeting the organic compound. The repeated use of $2-EI-TiO_2$ decreased the photocatalytic activity for the 4-CP degradation. Experiments using radical scavengers and oxidant probes revealed that the oxidation by photogenerated holes is responsible for the degradation of organic compounds by illuminated $2-EI-TiO_2$ and the role of $^{\bullet}OH$ is negligible.

Keywords

Acknowledgement

Grant : Human Resources Program in Energy Technology

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP), National Research Foundation of Korea (NRF)

References

  1. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y. (2001), "Visible-light photocatalysis in nitrogen-doped titanium oxides", Science, 293(5528), 269-271. https://doi.org/10.1126/science.1061051
  2. Buxton, G.V., Greenstock, C.L., Helman, W.P. and Ross, A.B. (1988), "Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals ($(^{\bullet}OH/^{\bullet}O^-)$) in aqueous solution", J. Phys. Chem. Ref. Data, 17(2), 513-886. https://doi.org/10.1063/1.555805
  3. Devi, L.G., Nagaraj, B. and Rajashekhar, K.E. (2012), "Synergistic effect of Ag deposition and nitrogen doping in $TiO_2$ for the degradation of phenol under solar irradiation in presence of electron acceptor", Chem. Eng. J., 181-182, 259-266. https://doi.org/10.1016/j.cej.2011.11.076
  4. Fujishima, A., Rao, T.N. and Tryk, D.A. (2000), "Titanium dioxide photocatalysis", J. Photochem. Photobiol. C-Photochem. Rev., 1(1), 1-21. https://doi.org/10.1016/S1389-5567(00)00002-2
  5. Gole, J.L., Stout, J.D., Burda, C., Lou, Y. and Chen, X. (2004), "Highly efficient formation of visible light tunable $TiO_2$-$_xN_x$ photocatalysts and their transformation at the nanoscale", J. Phys. Chem. B, 108(4), 1230-1240. https://doi.org/10.1021/jp030843n
  6. Hamdy, M.S., Amrollahi, R. and Mul, G. (2012), "Surface $Ti^{3+}$-containing (blue) titania: A unique photocatalyst with high activity and selectivity in visible light-stimulated selective oxidation", ACS Catal., 2(12), 2641-2647. https://doi.org/10.1021/cs300593d
  7. Hanaor, D.A.H. and Sorrell, C.C. (2011), "Review of the anatase to rutile phase transformation", J. Mater. Sci., 46(4), 855-874. https://doi.org/10.1007/s10853-010-5113-0
  8. He, T., Guo, X., Zhang, K., Feng, Y. and Wang, X. (2013), "Synthesis and characterization of B-N co-doped mesoporous $TiO_2$ with enhanced photocatalytic activity", RSC Adv., 4, 5880-5886. https://doi.org/10.1039/c3ra44046j
  9. Hoffmann, M.R., Martin, S.T., Choi, W. and Bahnemann, D.W. (1995), "Environmental applications of semiconductor photocatalysis", Chem. Rev., 95(1), 69-96. https://doi.org/10.1021/cr00033a004
  10. In, S., Orlov, A., Berg, R., Garcia, F., Pedrosa-Jimenez, S., Tikhov, M.S., Wright, D.S. and Lambert, R.M. (2007), "Effective visible light-activated B-doped and B,N-codoped $TiO_2$ photocatalysts", J. Am. Chem. Soc., 129(45), 13790-13791. https://doi.org/10.1021/ja0749237
  11. Kang, M. (2005), "The superhydrophilicity of Al-$TiO_2$ nanometer sized material synthesized using a solvothermal method", Mater. Lett., 59(24-25), 3122-3127. https://doi.org/10.1016/j.matlet.2005.05.032
  12. Kim, S. and Choi, W. (2005) "Visible-light-induced photocatalytic degradation of 4-chlorophenol and phenolic compounds in aqueous suspension of pure titania: Demonstrating the existence of a surface-complex-mediated path" J. Phys. Chem. B, 109(11), 5143-5149. https://doi.org/10.1021/jp045806q
  13. Kim, S., Hwang, S.J. and Choi, W. (2005), "Visible light active platinum-ion-doped $TiO_2$ photocatalyst", J. Phys. Chem. B, 109(51), 24260-24267. https://doi.org/10.1021/jp055278y
  14. Kim, W., Tachikawa, T., Kim, H., Lakshminarasimhan, N., Murugan, P., Park, H., Majima, T. and Choi, W. (2014), "Visible light photocatalytic activities of nitrogen and platinum-doped $TiO_2$: Synergistic effects of co-dopants", Appl. Catal. BEnviron., 147, 642-650. https://doi.org/10.1016/j.apcatb.2013.09.034
  15. Nasir, M., Bagwasi, S. Jiao, Y., Chen, F., Tian, B. and Zhang, J. (2014), "Characterization and activity of the Ce and N co-doped $TiO_2$ prepared through hydrothermal method", Chem. Eng. J., 236, 388-397. https://doi.org/10.1016/j.cej.2013.09.095
  16. Neville, E.M., MacElroy, J.M.D., Thampi, K.R. and Sullivan J.A. (2013), "Visible light active C-doped titanate nanotubes prepared via alkaline hydrothermal treatment of C-doped nanoparticulate $TiO_2$: Photo-electrochemical and photocatalytic properties", J. Photochem. Photobiol. A-Chem., 267, 17-24. https://doi.org/10.1016/j.jphotochem.2013.06.008
  17. Park, H., Park, Y., Kim, W. and Choi, W. (2013), "Surface modification of $TiO_2$ photocatalyst for environmental applications", J. Photochem. Photobiol. C-Photochem. Rev., 15, 1-20. https://doi.org/10.1016/j.jphotochemrev.2012.10.001
  18. Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S.M., Hamilton, J.W.J., Byrne, J.A., O'Shea, K., Entezari, M.H. and Dionysiou, D.D. (2012), "A review on the visible light active titanium dioxide photocatalysts for environmental applications", Appl. Catal. BEnviron., 125, 331-349. https://doi.org/10.1016/j.apcatb.2012.05.036
  19. Periyat, P., Pillai, S.C., McCormack, D.E., Colreavy, J. and Hinder, S.J. (2008), "Improved high-temperature stability and sun-light-driven photocatalytic activity of sulfur-doped anatase $TiO_2$", J. Phys. Chem. C, 112(20), 7644-7652. https://doi.org/10.1021/jp0774847
  20. Ruqaishy, M.A., Marzouqi, F.A., Qi, K., Liu, S.Y., Karthikeyan, S., Kim, Y., Al-Kindy, S.M.Z., Kuvarega, A.T. and Selvaraj, R. (2018), "Template-free preparation of $TiO_2$ micorspheres for the photocatalytic degradation of organic dyes", Korean J. Chem. Eng., 35(11), 2283-2289. https://doi.org/10.1007/s11814-018-0122-9
  21. Sakthivel, S. and Kisch, H. (2003), "Daylight photocatalysis by carbon-modified titanium dioxide", Angew. Chem. Int. Edit., 42(40), 4908-4911. https://doi.org/10.1002/anie.200351577
  22. Sathish, M., Viswanathan, B. and Viswanath, R.P. (2007), "Characterization and photocatalytic activity of N-doped $TiO_2$ prepared by thermal decomposition of Ti-melamine complex", Appl. Catal. B-Environ., 74(3-4), 307-312. https://doi.org/10.1016/j.apcatb.2007.03.003
  23. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M. and Bahnemann, D.W. (2014), "Understanding $TiO_2$ photocatalysis: Mechanisms and materials", Chem. Rev., 114(19), 9919-9986. https://doi.org/10.1021/cr5001892
  24. Selvam, K. and Swaminathan, M. (2012), "Nano N-$TiO_2$ mediated selective photocatalytic synthesis of quinaldines from nitrobenzenes", RSC Adv., 2(7), 2848-2855. https://doi.org/10.1039/c2ra01178f
  25. Vinu, R. and Madras, G. (2008), "Kinetics of simultaneous photocatalytic degradation of phenolic compounds and reduction of metal ions with nano-$TiO_2$", Environ. Sci. Technol., 42(3), 913-919. https://doi.org/10.1021/es0720457
  26. Wang, S.Q., Liu, W.B, Fu, P. and Cheng, W.L. (2017), "Enhanced photoactivity of N-doped $TiO_2$ for Cr(VI) removal: Influencing factors and mechanism", Korean J. Chem. Eng., 34(5), 1584-1590. https://doi.org/10.1007/s11814-017-0003-7
  27. Yuan, R., Liu, D., Wang, S., Zou, B. and Ma, F. (2018) "Enhanced photocatalytic oxidation of humic acids using $Fe^{3+}-Zn^{2+}$ codoped $TiO_2$: The effects of ions in aqueous solutions", Environ. Eng. Res., 23(2), 181-188. https://doi.org/10.4491/eer.2017.062
  28. Yu, J.C., Ho, W., Yu, J., Yip, H., Wong, P.K. and Zhao, J. (2005), "Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania", Environ. Sci. Technol., 39(4), 1175-1179. https://doi.org/10.1021/es035374h
  29. Zhang, J., Wu, Y., Xing, M., Leghari, S.A.K. and Sajjad, S. (2010), "Development of modified N doped $TiO_2$ photocatalyst with metals, nonmetals and metal oxides", Ener. Environ. Sci., 3, 715-726. https://doi.org/10.1039/b927575d
  30. Zou, X., Liu, J., Su, J., Zuo, F., Chen, J. and Feng, P. (2013), "Facile synthesis of thermal- and photostable titania with paramagnetic oxygen vacancies for visible-light photocatalysis", Chem. Eur. J., 19(8), 2866-2873. https://doi.org/10.1002/chem.201202833
  31. Zuo, F., Wang, L., Wu, T., Zhang, Z., Borchardt, D. and Feng, P. (2010), "Self-doped $Ti^{3+}$ enhanced photocatalyst for hydrogen production under visible light", J. Am. Chem. Soc., 132(34), 11856-11857. https://doi.org/10.1021/ja103843d