• Title/Summary/Keyword: photo-curable resin

Search Result 20, Processing Time 0.029 seconds

Development of Build-up Printed Circuit Board Manufacturing Process Using Rapid Prototyping Technology and Screen Printing Technology (쾌속조형과 스크린 인쇄기술을 이용한 빌드업인쇄회로기판의 제조공정기술개발)

  • 조병희;정해도;정해원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.130-136
    • /
    • 2000
  • Generally, the build-up printed circuit board manufactured by the sequential process with etching, plating, drilling etc. requires many types of equipments and lead time. Etching process is suitable for mass production, however, it is not adequate for manufacturing prototype in the developing stage. In this study, we introduce a screen printing technology to prototyping a build-up printed circuit board. As for the material, photo/thermal curable resin and conductive paste are used for the formation of dielectric and conductor. The build-up structure is made by subsequent processes such as the formation of liquid resin thin layer, the solidification by UV/IR light, and via filling with conductive paste. By use of photo curable resin, productivity is greatly enhanced compared with thermal curable resin. Finally, the basic concept and the possibility of build-up printed circuit board prototyping are proposed in comparison with to the conventional process.

  • PDF

Development of Build-up Printed Circuit Board Manufacturing Process Using Rapid Prototyping Technology and Screen Printing Technology

  • Im, Yong-Gwan;Cho, Byung-Hee;Chung, Sung-Il;Jeong, Hae-Do
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.51-56
    • /
    • 2003
  • Generally, the build-up printed circuit board manufactured by a sequential process involving etching, plating, drilling, etc, which requires many types of equipments and long lead time. Etching process is suitable for mass production, however, it is not adequate for manufacturing a prototype in the development stage. In this study, we introduce a screen printing technology for prototyping a build-up printed circuit board. As for the material, photo/thermal curable resin and conductive paste are used for the formation of dielectric and conductor. The build-up structure is made by subsequent processes such as formation of a liquid resin thin layer, solidification by a UV/IR light, and via hole filling with a conductive paste. By use of photo curable resin, productivity is greatly enhanced compared with thermal curable resin. Finally, the basic concept and the possibility of build-up printed circuit board prototyping are proposed in comparison with the conventional process.

Process Conditions for the Fabrication of Hydrophobic Surfaces with Different Photo-curable Resins (광경화성 레진의 성분 변화에 대한 소수성 표면 제작을 위한 공정 조건)

  • Hong, Sung-Ho;Woo, Heung-Sik
    • Tribology and Lubricants
    • /
    • v.36 no.5
    • /
    • pp.267-273
    • /
    • 2020
  • This study experimentally investigates hydrophobic surfaces fabricated via additive manufacturing. Additive manufacturing, commonly known as 3D printing, is the process of joining materials to fabricate parts from 3D model data, usually in a layer-upon-layer manner. Digital light processing is used to fabricate hydrophobic surfaces in this study. This method uses photo-curable resins and ultraviolet (UV) sources. Moreover, this technique generally has faster shaping speeds and is advantageous for the fabrication of small components because it enables the fabrication of one layer at a time. Two photo-curable resins with different compositions are used to fabricate micro-patterns of hydrophobic surfaces. The resins are composed of a photo-initiator, monomer, and oligomer. Experiments are conducted to determine suitable process conditions for the fabrication of hydrophobic surfaces depending on the type of resin. The most important factors affecting the process conditions are the UV exposure time and slice thickness. The fabrication capability according to the process conditions is evaluated using the side and top views of the micro-patterns observed using a microscope. The micro-patterns are collapsed and intertwined when the exposure time is short because sufficient light (heat) is not applied to cure the photo-curable resin with a given slice thickness. On the other hand, the micro-patterns are attached to each other when the exposure time is prolonged because the over-curing time can cure the periphery of a given shape. When the slice is thicker, the additional curing area is enlarged in each slice owing to the straightness of UV light, and the slice surface becomes rough.

Mechanical Characteristics of CF Laminated Prepreg with UV-thermal Dual Curable Epoxy Resin (광·열경화형 수지를 이용한 탄소섬유 프리프레그의 물리적 특성)

  • Sim, Ji-hyun;Kim, Ji-hye;Park, Sung-min;Koo, Kwang-hoe;Jang, Key-wook;Bae, Jin-seok
    • Textile Coloration and Finishing
    • /
    • v.29 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • An issue of major concern in the utilization of laminated composites based epoxy resin is associated with the occurrence of delaminations or interlaminar cracks, which may be related to manufacturing defects or are induced in service by low-velocity impacts. A strong interfacial filament/brittle epoxy resin bonding can, however, be combined with the high fracture toughness of weak interfacial bonding, when the filaments are arranged to have alternate sections of shear stress. To improve this drawback of the epoxy resin, UV-thermal dual curable resin were developed. This paper presents UV-thermal dual curable resin which were prepared using epoxy acrylate oligomer, photoinitiators, a thermal-curing agent and thermoset epoxy resin. The UV curing behaviors and characteristics of UV-thermal dual curable epoxy resin were investigated using Photo-DSC, DMA and FTIR-ATR spectroscopy. The mechanical properties of UV-thermal dual curable epoxy resin impregnated CF prepreg by UV curable resin content were measured with Tensile, Flextural, ILSS and Sharpy impact test. The obtained results showed that UV curable resin content improves the epoxy toughness.

Nanoimprinting Pattern Formation Using Photo-Curable Acrylate Composites (광경화성 아크릴레이트 복합체를 이용한 나노 임프린트 패턴 형성)

  • Kim, Sung-Hyun;Park, Sun-Hee;Moon, Sung-Nam;Lee, Woo-Il;Song, Ki-Gook
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.536-541
    • /
    • 2012
  • The effects of silica content were studied on UV curing characteristics and defect formations in imprinted patterns of hundreads nanometer size for the photo-curable imprinting composites with silica particles. An increase in elasticity and a decrease in shrinkage were observed with an increase in silica content in the imprinting resin which was UV cured at room temperature. However, the patterned nano-pillars were stuck together with neighboring nano-pillars if the amount of silica is more than 7 wt%. This can be ascribed to the increased viscosity of imperfectly cured resin due to the obstruction of the photo-reaction by silica particles. Addition of silica to the imprinting resin is useful in enhancing the strength of the cured resin although it is difficult to get good imprinted patterns for the resin with more than 7 wt% of silica due to the reduction of photo-reaction conversion.

Study on the Curing Properties of Photo-curable Acrylate Resins (광경화성 아크릴 수지의 경화특성에 관한 연구)

  • Kim, Sung-Hyun;Chang, Hyun-Suk;Park, Sun-Hee;Song, Ki-Gook
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.469-473
    • /
    • 2010
  • The curing mechanism and characteristics of UV curable acrylate resins were studied using Photo-DSC, FTIR, and Raman spectroscopy. Effects of chemical structures of acrylate, numbers of functional group, and UV intensity on curing kinetics were investigated with Photo-DSC. FTIR and Raman spectroscopy has been used to understand curing mechanisms and reaction conversion. In order to investigate the effect of oxygen on the photo-curing reaction, the curing process was compared between the acrylate and thiol-ene resins. The reaction conversion was found to be less than 80% for acrylate resins. The photo-curing reaction of the acrylate resin could not proceed to the end because of oxygen which acts as a reaction inhibitor while the thiol-ene resin was hardly affected from oxygen during the curing process.

Development of a Multi-material Stereolithography System (다중재료 광조형장치 개발)

  • Kim, Ho-Chan;Choi, Jae-Won;Wicker, Ryan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.135-141
    • /
    • 2010
  • Researchers continue to explore possibilities for expanding additive manufacturing (AM) technologies into direct product manufacturing. One limitation is in the materials available for use in AM that can meet the needs of end-use applications. Stereolithography (SL) is an AM technology well known for its precision and high quality surface finish capabilities. SL builds parts by selectively crosslinking or solidifying photo-curable liquid resins, and the resin industry has been continuously developing new resins with improved performance characteristics. This paper introduces a unique SL machine that can fabricate parts out of multiple SL materials. The technology is based on using multiple vats positioned on a rotating vat carousel that contain different photo-curable materials. To change the material during the process, the build platform is raised out of the current vat, a new vat with a different material is rotated under the platform, and the platform is submerged into the new vat so that the new material can be used. This paper introduces a new vat exchange mechanism, cleaning process, recoating process, resin leveling mechanism and process planning technologies for the implementation of multiple material SL. An overview of the system framework is provided and the system integration and control software is described. In addition, several multiple material test parts are designed, fabricated, and described.

Photostabilization and Cure Kinetics of UV-Curable Optical Resins Containing Photostabilizers

  • Cho, Jung-Dae;Kim, Sung-Hwa;Chang, In-Cheol;Kim, Kwon-Seok;Hong, Jin-Who
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.560-564
    • /
    • 2007
  • The photostabilization and cure kinetics of UV-curable, optical resins containing various formulations of photostabilizers were investigated to determine the system with the highest cure conversion and durability. Photo-DSC analysis revealed that increasing the concentration of a UV absorber (UVA) decreased both the crosslink density and the cure rate due to competition for the incident photons between the photoinitiator and the UVA, whereas including a hindered amine light stabilizer (HALS) hardly affected either the cure conversion or the cure rate due to its very low absorption of 365 nm. This result was confirmed by FTIR-ATR spectroscopy and UV-visible spectroscopy analyses. QUV ageing experiments showed that the cure conversion and durability were the highest for the UVA/HALS formulation at a ratio of 1 : 2, which is due to their synergistic action.

Development of Build up Multilayer Board Rapid Manufacturing Process Using Screen Printing Technology (스크린인쇄 법을 이용한 Build-up다층인쇄회로기판의 쾌속제조공정 기술개발)

  • 조병희;정해도;정해원
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.4
    • /
    • pp.15-22
    • /
    • 1999
  • Generally, many equipments and a long lead time ale required to manufacture the build-up multilayer board through various processes such as etching, plating, drilling etc. Wet process is suitable for mass production, however it is not adequate for manufacturing prototype in developing stage. In this study, a silk screen printing technology is introduced to make a prototype build-up multilayer board. As for the material photo/thermal curable resin and conductive paste are used for forming dielectric and conductor. And conductive paste fills vias for interconnecting each layer, and also is used for circuit patterning by silk screen technology. Finally, the basic concept and the possibility of build-up multilayer board prototype is proposed and verified as a powerful approach, compared with the conventional processes.

  • PDF