• Title/Summary/Keyword: phosphorus loading

Search Result 170, Processing Time 0.025 seconds

A Study on Phosphorus Loading model for Eutrophication Response in the Yongsan Lake (영산호의 부영양화 평가를 위한 인부하모델의 검토)

  • 류일광;이치영
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.97-104
    • /
    • 2000
  • The purpose of this is made an examination of phosphorus loading model for eutrophication response in the Yongsan lake. For the model, we measured the total amount of nutrients derived from the Yongsan river watershed, inflow rate to the Yongsan lake, water quality, and water budget from January to December in 1999. The total amount of precipitation in the Yongsan river watershed was 4,951.7$\times$10$^{6}$ ㎥/y and inflow amount was 2,569.7$\times$10$^{6}$ ㎥/y, therefore the outflow rate of the Yongsan river watershed was 51.9%. The develop loading of total nitrogen was 86,928.1kg/d and that of total phosphorus was 22,007.6kg/d at the Yongsan river watershed, But, as the inflow loading of total nitrogen was 33,962kg/d and the inflow loading of total phosphorus was 2,218kg/d to the Yongsan lake. so each infolw rate was 39.0% and 10.1%. The hydraulic residence time was 34days, total phosphorus loading [L(P)] on the surface area was 23.398g/㎥/y, the hydraulic load( $Q_{s}$) of inflow water was 74.269m/y, the reserve rate of phosphorus in the lake was 0.359, and the settinh velocity of phosphorus was 0.114m/d at the Yongsan lake. Mathematical model of phosphorus loading to estimate the responses of eutrophication at the Yongsan lake is [ $P_{j}$] = 0.838 [L(P)/Q.(1+√ $T_{w}$)$^{-1}$ ] . ] . .

  • PDF

Phosphorus and nitrogen loading from the main tributaries into the Nakdong River (낙동강 주요 지천의 인 및 질소부하량에 관한 연구)

  • 허우명;김범철
    • Journal of Environmental Science International
    • /
    • v.4 no.3
    • /
    • pp.187-196
    • /
    • 1995
  • Phosphorus and nitrogen loadings from the main tributaries into the Nakdong River were estimated by measuring phosphorus and nitrogen concentration in the main tributaries, Nakdong River(Kangjung), Kumho River, Heichun, Hwang River, Nam River, Milyang River, and Yangsanchun from May 1994 to October. Total Phosphorus concenuation of Kumho River was vary high, average 1.0 mgP/1. The other rivers were the range 0.05 ~0.15 mgP/1. Total nitrogen concentration of Kumho River was vary high, average 6.27 mgN/1. The other rivers were the range 1.5~3.0 mgN/l. The phosphorus loading from Kumho River, Nakdong River(Kangjung), Nam River, Milyang River, Hwang River, Yangsanchun, and Heichun were calculated to be 1, 108, 603, 198, 57, 34, 23, and 21 tP/yr, respectively. Therefore, the loading from Kumho River accounted for 45 "yo of total loading, 2, 042 tP/yr, The nitrogen loading from Nakdong River (Kangjung), Kumho River, Nam River, Milyang River, Hwang River, Heichun, and Yangsanchun were calculated to be 12, 636, 7, 411, 2, 611, 1, 523, 779, 608, and 391 tN/yr, respectively. Therefore, the loading from Nakdong River(Kangiung) and Kumho River accounted for 50 % and 30% of total loading, 25, 959 tN/yr, respectively.vely.

  • PDF

PHOSPHORUS RELEASE AND UPTAKE ACCORDING TO NITRATE LOADING IN ANOXIC REACTOR OF BNR PROCESS

  • Kim, Kwang-Soo
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.257-263
    • /
    • 2005
  • A batch and a continuous type experiments were conducted to test the conditions for simultaneous phosphorus release and uptake, and denitrification, taking place in one process. The bacteria able to denitrify as well as to remove phosphorus were evaluated for the application to biological nutrient removal(BNR) process. In the batch-type experiment, simultaneous reactions of phosphorus release and uptake, and also denitrification were observed under anoxic condition with high organic and nitrate loading. However the rate and the degree of P release were lower than that occurred under anaerobic condition. BNR processes composed of anaerobic-anoxic-oxic(AXO), anoxic-anaerobic-oxic(XAO) and anoxic-oxic(XO) were operated in continuous condition. The anoxic reactors in each process received nitrate loading. In the AXO process, P release in anaerobic reactor and the luxury uptake in oxic reactor proceeded actively regardless to nitrate loading. However in XAO and XO processes, P release and luxury uptake occurred only with the nitrate loading less than $0.07\;kg{NO_3}^--N$/kgMLSS-d. With higher nitrate load, P release increased and the luxury uptake decreased. Therefore, it appeared that the application of denitrifying phosphorus-removing bacteria (DPB) to BNR process must first resolve the problem with decrease of luxury uptake of phosphorus in oxic reactor.

The effect of phosphorus removal from sewage on the plankton community in a hypertrophic reservoir

  • Jung, Sungmin;Kim, Kiyong;Lee, Yunkyoung;Lee, Jaeyong;Cheong, Yukyong;Reza, Arif;Kim, Jaiku;Owen, Jeffrey S.;Kim, Bomchul
    • Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.66-74
    • /
    • 2016
  • Background: When developing water quality improvement strategies for eutrophic lakes, questions may arise about the relative importance of point sources and nonpoint sources of phosphorus. For example, there is some skepticism regarding the effectiveness of partial reductions in phosphorus loading; because phosphorus concentrations are too high in hypertrophic lakes, in-lake phosphorus concentrations might still remain within typical range for eutrophic lakes even after the reduction of phosphorus loading. For this study, water quality and the phytoplankton and zooplankton communities were monitored in a hypertrophic reservoir (Lake Wangsong) before and after the reduction of phosphorus loading from a point source (a sewage treatment plant) by the installation of a chemical phosphorus-removal process. Results: Before phosphorus removal, Lake Wangsong was classified as hypertrophic with a median phosphorus concentration of $0.232mg\;L^{-1}$ and a median chlorophyll-a concentration of $112mg\;L^{-1}$. The dominant phytoplankton were filamentous cyanobacteria for the most of the ice-free season. Following the installation of the advanced treatment process, phosphorus concentrations were reduced to $81mg\;L^{-1}$, and the N/P atomic ratio increased from 42 to 102. Chlorophyll-a concentrations decreased to $42{\mu}g\;L^{-1}$, and the duration of cyanobacterial dominance was confined to the summer season. Cyanobacteria in spring and autumn were replaced by diatoms and cryptomonads. Filamentous cyanobacteria in summer were replaced by colony-forming unicellular Microcystis spp. It was remarkable that zooplankton biomass increased despite the decrease in phytoplankton biomass, and especially cladoceran zooplankton which increased drastically. These responses to the reduction of point source P loading to Lake Wangsong imply that reducing the point source P loading can have a big impact even when nonpoint sources account for a large fraction of the total annual phosphorus loading. Conclusions: Our results also show that the phytoplankton community can shift to decreased cyanobacterial dominance and the zooplankton community can shift to higher cladoceran dominance, even when phosphorus concentrations remain within the typical range for eutrophic lakes following the reduction of phosphorus loading.

The evaluation of the eutrophication for the lakes by phosphorus loading (총인부하량을 이용한 인공호의 부영양화 평가)

  • 김재윤
    • Journal of Environmental Science International
    • /
    • v.12 no.7
    • /
    • pp.689-695
    • /
    • 2003
  • The purpose of this study is to evaluate and to predict of eutrophication in lakes by using Vollenweider-OECD model and total phosphorus concentration and inflow rate which were measured in 1993∼2001. The results of study were as follows. The annual total phosphorus loading from the watershed was calculated to be 55∼195tP/yr at lake Soyang, 221∼466tP/yr at lake Taechong, 123∼278tP/yr at lake Andong, 57∼109tP/yr at lake Seomjin. These are discharged, far the most parts, from population and fishfarm facility. TP loading on the surface area at lake Soyang was 3.01gP/㎡/yr, 2.82gP/㎡/yr, 2.84gP/㎡/yr, 3.03gP/㎡/yr, 2.34gP/㎡/yr, 1.78gP/㎡/yr, 0.91gP/㎡/yr, 0.89gP/㎡/yr, 0.86gP/㎡/yr, lake Taechong was 6.71gP/㎡/yr, 7.25gP/㎡/yr, 7.24gP/㎡/yr, 6.53gP/㎡/yr, 6.50gP/㎡/yr, 7.06gP/㎡/yr, 7.04gP/㎡/yr, 4.05gP/㎡/yr, 3.44gP/㎡/yr and TP loading on the surface area of lake Andong, lake Soemjin were 5.39gP/㎡/yr, 4.47gP/㎡/yr, 4.56gP/㎡/yr, 4.45gP/㎡/yr, 3.33gP/㎡/yr, 2.38gP/㎡/yr, 2.53gP/㎡/yr, 2.46gP/㎡/yr, 2.54gP/㎡/yr, 4.09gP/㎡/yr, 4.10gP/㎡/yr, 3.98gP/㎡/yr, 3.73gP/㎡/yr, 2.80gP/㎡/yr, 3.46gP/㎡/yr, 3.22gP/㎡/yr, 2.19gP/㎡/yr, 2.13gP/㎡/yr respectively. The tropic states of four lakes can be assessed as eutrophy because phosphorus leading exceeds the critical phosphorus loading by Vollenweider-OECD model.

Effects of Sediments on the Growth of Algae at Chusori Area in Daechung Reservoir (대청호 추소리 수역의 퇴적물이 조류 성장에 미치는 영향)

  • Oh, Kyoung-Hee;Kim, Yong-Jun;Cho, Young-Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.533-542
    • /
    • 2015
  • In order to investigate the effect of internal loading from sediment on algal blooming at Chusori area in Daechung Reservoir, the amount and contamination level of sediment and the release rate of total phosphorus were analyzed. The sedimentary layer was consisted with two layers, and the average depth of upper and lower ones were 0.35 and 1.44 m, respectively. The fraction of inorganic phosphorus in the sediment was higher than that of organic phosphorus, and the fractions of phosphorus which responsible for internal loading were very high as in the range of 72.7 and 80.2% of inorganic phosphorus. The C/N ratio of sediment taken with core sampler indicated the organic compounds are originated from settled algae from water body. The average release rate of total phosphorus from sediment was $6.74({\pm}0.50)mg/m^2/day$. These results indicated that the internal loading from sediment contributes the excessive algal growth at Churosi area, and the countermeasures to improve the quality of sediments are required to manage algal blooming in Daechung Reservoir.

Treatment of Piggery Wastewater by Anoxic-Oxic Biofilm Process (준혐기-호기 생물막 공정을 이용한 돈사폐수 처리)

  • 임재명;한동준
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.2
    • /
    • pp.1-12
    • /
    • 1997
  • This research aims to develop biofilm process for the nutrient removal of piggery wastewater. The developed process is the four stage anoxic-oxic biofilm process with recirculation of the final effluent. In summery, the results are as follows: 1. Nitrification in the piggery wastewater built up nitrite because of the high strength ammonia nitrogen. The nitrification of nitrobacter by free ammonia was inhibited in the total ammonia nitrogen loading rate with more than 0.2 kgNH$_{3}$-N/m$^{3}$·d. 2. The maximal total ammonia nitrogen removal rate was obtained at 22$\circ $C and without being affected by the loading rate. But total oxidized nitrogen production rate was largely affected by loading rate. 3. Autooxidation by the organic limit was a cause of the phosphorus release in the aerobic biofilm process. But the phosphorus removal rate was 90 percent less than the influent phosphorus volumetric loading rate of above 0.1 kgP/m$^{3}$·d. Therefore, the phosphorus removal necessarily accompanied the influent loading rate. 4. On the anoxic-oxic BF process, the total average COD mass balance was approximately 67.6 percent. Under this condition, the COD mass removal showed that the cell synthesis and metabolism in aerobic reactor was 42.8 percent and that the denitrification in anoxic reactor was 10.7 percent, respectively.

  • PDF

우리나라 인공호의 부영양화 평가 및 예측에 관한 연구

  • 김재윤
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.441-450
    • /
    • 1998
  • The purpose of this study is to evaluate and to predict of eutrophication in lakes by using VollenweiderGECD model and total phosphorus concentration and inflow rate which were measurded in 1993-1996. The results of study was as follows. The annual total phosphorus loading from the watershed was calculated to be 181-195tP /yr at lake Soyang, 591-680tP/yr at lake Chungju, 420-466tP/yr at lake Taechong, 229-278tP/yr at lake Andong, 103-106tP/yr at lake Hapchon, 57-59tP/yr at lake Imha, 194-244tP/yr at lake Namgang, 8386tP /yr at lake Chuam, 99-109tP /yr at lake Somjin. These are discharged, for the most parts, from population and ftshfarm facility. TP loading on the surface area at lake Soyang was 3.0lgP/$m^2$/yr, 2.82gP/$m^2$/yr, 2.84gP/$m^2$/yr, 3. 03gP/$m^2$/yr, at lake Chungju 7.91gP/$m^2$/yr, 6.87gP/$m^2$/yr, 7.38gP/$m^2$/yr, 7.l8gP/$m^2$/yr, at lake Taechong 6.7lgP/$m^2$/yr, 7.25gP/$m^2$/yr, 7.24gP/$m^2$/yr, 6.53gP/$m^2$/yr and TP loading on the surface area of Nakdong river basin, that is, lake Andong, Imha, Hapchon and Namgang were 5.39gP/$m^2$/yr, 4.47gP/$m^2$/yr, 4. 56gP/$m^2$/yr, 4.45gP/$m^2$/yr and 2.20gP/$m^2$/yr, 2.23gP/$m^2$/yr, 2.24gP/$m^2$/yr, 2.l7gP/$m^2$/yr and 4.50gP/$m^2$/ yr, 4.50gP/$m^2$/yr, 4.54gP/$m^2$/yr, 4.43gP/$m^2$/yr and 8.25gP/$m^2$/yr, 8.48gP/$m^2$/yr, 8.48gP/$m^2$/yr, 10. 39gP/$m^2$/yr respectively. Also those of lake Chuam was 2.51gP/$m^2$/yr, 2.61gP/$m^2$/yr, 2.52gP/$m^2$/yr, 2. 54gP/$m^2$/yr and TP loading on the surface area at lake Somjin was analysed 4.09gP/$m^2$/yr, 4.l0gP/$m^2$/yr, 3.98gP/$m^2$/yr,3.73gP/$m^2$/yr. The tropic states of nine lakes can be assessed as eutrophy because phosphorus loading exceeds the critical phosphorus loading by Vollenwelder-GECD model.

  • PDF

Biological Phosphorus Removal using the Sequencing Batch Reactor Process (연속회분식반응조를 이용한 생물학적인 인 제거 연구)

  • Yang, Hyung-Jae;Shin, Eung-Bai;Chung, Yun-Chul;Choi, Hun-Geun
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.533-539
    • /
    • 2000
  • A bench-scale reactor using SBR process was experimented with an synthetic wastewater. The main purpose of this investigation was to evaluate applicability in the field and process removal efficiencies in terms of BOD and T-P and its corresponding kinetic parameters. Removal rate of phosphorus was 77% in terms of total phosphorus. Effluent concentrations were $9.8mg/{\ell}$ BOD and $1.1mg/{\ell}$ T-P. Effluent quality was maintained consistently stable by controlling decant volume and operating cycles. The efficiency for phosphorus removal was increased due to decrease in BOD-SS loading value in the range of $0.25{\leq}$aeration time ratio${\leq}0.52$.

  • PDF

Fractions of Phosphorus in the Surficial Sediment of Dongjin Sea Area (동진강 해역 표층 퇴적물 중 인의 화학적 형태별 함량)

  • Lee, Hyun-Jeong;Son, Jae-Gwon;Park, Bong-Ju;Cho, Jae-Young
    • Journal of Korean Society of Rural Planning
    • /
    • v.11 no.4 s.29
    • /
    • pp.25-31
    • /
    • 2005
  • The present study was carried out to investigate the P fractions of surfical sediment of Dongjin sea area. Furthermore, potential released loading of adsorbed and non-apatite inorganic phosphorus were investigated in the sediment of Dongjin sea area. The contents of phosphorus fractions of the surficial sediment in Dongjin sea area were adsorbed-P 0.06%, nonapatite inorganic-P 13.02%, apatite-P 60.22%, and residual-P 26.70%. The most abundant fraction was apatite-P, residual-P, nonapatite inorganic-P, and adsorbed-P followed it. Potential released loading of adsorbed and non-apatite inorganic phosphorus surveyed 2.6 and 597ton respectively. These results show that sediment-managing and interception from external pollution are needed for water environmental maintenance of Dongjin sea area.