• Title/Summary/Keyword: phosphorus flame retardant

Search Result 56, Processing Time 0.021 seconds

Design and Characterization of Low Viscosity Epoxy Based on Flame Retardant Phosphorus Epoxy (난연성 인계 에폭시를 기반으로 한 저점도 에폭시 설계 및 특성 분석)

  • Park, Jun-Seong;Woo, Je-Wan
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.449-455
    • /
    • 2021
  • Composite materials are substances that are configured to have excellent physical properties by combining the properties of a single substance, and are in the limelight as materials that exceed the performance of metals and polymers. However, it has the disadvantages of long cycle time and high unit price, and much research is being performed to overcome these disadvantages. In this study, we developed an epoxy resin curing agent that can shorten the time required for mass production of composite materials, and tried to expand the applicability of objections by imparting flame retardancy. The epoxy resin used as a basic substance utilized two types of bisphenol F and resorcinol structure, which was further modified using 9,10-dihydro-9-oxa-10-phosphaphenantrene-10-oxide (DOPO) to impart flame retardancy. Triethylphosphate (TEP) and bis [(5-ethyl-2-methyl-1,3,2-dioxaphosphorinan-5-yl)methyl] methyl phosphonate P,P'-dioxide (FR-001) were used as additives, seven kinds of compositions were blended, thermal characteristics (gelation time, glass transition temperature) and flame retardant performance were evaluated. We successfully developed an epoxy matrix that can be applied to high pressure resin transfer molding (HP-RTM) process.

Effect of Halogen-phosphours Flame Retardant Content on Properties of Rigid Polyurethane Foam (인-할로겐계 난연제가 경질폴리우레탄 폼의 물성에 미치는 영향)

  • Kim, Chang Bum;Kim, Sang Bum
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.77-81
    • /
    • 2013
  • In this study, the effect of halogen-phosphorus flame retardant on the flame retardancy and the mechanical properties of the rigid polyurethane foam (PUF) were studied. The reduced compressive strength and glass transition temperature of PUF decreased as contents of the flame retardant increased. After aging, the reduced compressive strength and glass transition temperature of PUF increased due to the reaction of unreacted isocyanate. The cell morphology effect of these flame retardants was also investigated using scanning electron microscope. The results of TCEP added to PUF showed an unstable and uneven cell morphology, leading to the increase of in thermal conductivity. The flame retardancy of vacuum aged PUF decreased compared to that of fresh PUF.

Synthesis of Polyurethane Emulsion Modified with Phosphorus Compounds (인 변성 폴리우레탄 에멀젼의 합성에 관한 연구)

  • Wu, Jong-Pyo;Cho, Sun-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.275-282
    • /
    • 2003
  • Aqueous polyurethane dispersion was synthesized using phosphorus compound which received significant attention for the replacement of halogenated flame retardants. In this study, polyols which have phosphorus moity in their structural unit were synthesized by two-step polycondensation reaction using dimethyl phenylphosphonate, ethylene glycols. adipic acid, and 1,4-butanediol. In the next step, polyurethane dispersion was prepared using these polyols, isophorone diisocyanate with dimethyl propionic acid. The particle size of polyurethane latex was reduced from 347 nm to 240 nm with increasing DMPA content. It was observed that the LOI values of prepared coatings increased from 27% to 35% with increasing phosphorus content.

Synthesis and Analysis of Modified Polyesters Containing Phosphorus and Chlorine for Flame-Retardant Coatings (난연도료용 인과 염소 함유 변성폴리에스터의 합성 및 분석)

  • Park, Hong-Soo;Ahn, Sung-Hwan;Jo, Hye-Jin;Shim, Il-Woo;Hahm, Hyun-Sik;Kim, Seung-Jin;Kim, Seong-Kil
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.26-36
    • /
    • 2006
  • The aim of this study is to synthesis basic resins for the preparation of PU flame-retardant coatings that contain phosphorus and chlorine. After synthesizing intermediates of tetramethylene bis(orthophophate) (TMBO) and neohexanediol trichlorobenzoate (TBA-adduct), the condensation polymerization was performed with the intermediates, 1,4-butanediol, and adipic acid to obtain four-component copolymers. In the condensation polymerization, the content of phosphorus was fixed to be 2%, and the content of trichlorobenzoic acid (TBA) that provides chlorine component was varied to be 10, 20, and 30wt%, and we designated the prepared modified polyesters containing chlorine and phosphorus as TTBA-10C, TTBA-20C and TTBA-30C. Average molecular weight and polydispersity index of the prepared TTBAs decreased with increasing TBA content because of the increase in the number of hydroxyl groups that retards reaction. We found that the thermal stability of the prepared TTBAs increased with chlorine content at high temperatures.

Radical Addition Reaction of Phosphorous based Flame Retardant with End Groups of PET (1) - Reaction of Bisphenol A bis(diphenyl phosphate) - (PET 말단에 대한 인계난연제의 라디칼계 부가반응 (1) - 비스페놀에이비스다이페닐포스페이트의 반응 -)

  • Kim, Min-Kwan;Ghim, Han-Do
    • Textile Coloration and Finishing
    • /
    • v.24 no.1
    • /
    • pp.33-38
    • /
    • 2012
  • In this study, to increase flame retardation of poly(ethylene terephthalate) (PET) in burning, bisphenol A bis(diphenyl phosphate) (BDP), a well known flame retardant containing phosphorous, was reacted on end groups of PET by radical pathway. End-capping mechanism of PET with BDP was suggested and confirmed by spectroscopic and thermal analysis. From 400 MHz $^{31}P$ solid state FT-NMR spectrum of end-capped PET (PET-BDP), phosphorus spectra peak in BDP was found at ca. -20 ppm. Furthermore, P-C bond stretching vibration peaks were found ca. $600cm^{-1}$ in FT-IR spectrums of PET-BDP. These results showed that BDP can be chemically added on end groups of PET by our method. Thermal characteristics of pure PET (pPET) and PET-BDP were measured and evaluated by TGA analysis. There was not significant changes in thermal characteristics of PET-BDP compared to that of pPET.

Radical Addition Reaction of Phosphorous based Flame Retardant with End Groups of PET (2) - Reaction of Resorcinol bis(diphenyl phosphate) - (PET 말단에 대한 인계난연제의 라디칼계 부가반응 (2) - 리소시놀비스다이페닐포스페이트의 반응 -)

  • Kim, Min-Kwan;Sohn, Kwang-Ho;Ghim, Han-Do
    • Textile Coloration and Finishing
    • /
    • v.24 no.1
    • /
    • pp.39-44
    • /
    • 2012
  • To improve flame retardation of poly(ethylene terephthalate) (PET) against burning, resorcinol bis(diphenyl phosphate) (RDP), phosphorous containing flame retardant, was incorporated into PET backbone by radical reaction pathway. Radical endcapping of PET with RDP was confirmed by spectroscopic and thermal analysis. From 400 MHz $^{31}P$ solid state FT-NMR spectrum of PET with RDP (PET-RDP), phosphorus spectra peak in RDP was found at ca. -10 ppm. Furthermore, P-C bond stretching vibration peaks were found ca. $530cm^{-1}$ in FT-IR spectrums of PET-RDP. These results indicated that RDP can be chemically bound at the ends of PET by radical addition method. Thermal characteristics of pure PET (pPET) and PET-RDP were measured and evaluated by TGA thermal analysis. There was not significant changes in thermal characteristics of PET-RDP compared to that of pPET.

Durable Flame-Retardant Finish of Cotton Fabrics Using a Water-soluble Cyclophosphazene Derivative (수용해성 사이클로포스파젠 유도체를 이용한 면섬유의 내구성 방염가공)

  • Kim, Jeong-Hwan;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.33 no.2
    • /
    • pp.64-71
    • /
    • 2021
  • Large amount of formaldehyde could be released inevitably during the flame-retardant (FR) treatments or from the finished fabrics using Provatex reagent and Proban polymers which have been used as durable FRs for cotton. A water-soluble cyclophosphazene derivative was synthesized as an ecofriendly phosphorus-based FR for cotton fibers. Dichloro tetrakis{N-[3-(Dimethylamino)propyl]methacrylamido} cyclcophosphazene (DCTDCP) was synthesized through the substiutution reaction of Hexachloro cyclophosphazene and N-[3-(Dimethylamino)propyl] methacrylamide at a mole ratio of 1 : 4, which can be cured dually by both alkaline treatment and UV irradiation. More crosslinked networks were produced through the addition of Triacryloyl hexahydrotriazine and Acrylamide as a UV-curable crosslinker and a comonomer respectively. Both flame retardancy and washing durability of the FR cotton were improved synergistically. The durability improvement may be caused by the covalent bond formation of the FR with cellulose and the high degree of polymerization of DCTDCP, which can be verified by the pyrolysis and combustion behaviors analyzed by LOI, TGA, and microcalorimeter.

A Study on the Improvement of Flame Retardancy of Polylactide for Construction Materials (건축자재용 폴리락타이드의 난연성 향상에 관한 연구)

  • Cha, Sang-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.2
    • /
    • pp.113-119
    • /
    • 2021
  • Polymers are widely applied to construction materials due to their lightweight and excellent mechanical properties. However, owing to the combustible properties, polymers are one of the biggest reason of spreading large fires in fire accidents that occur frequently in the construction industry. Therefore, as a solution to this problem, many research has been conducted to impart flame retardancy by incorporating flame retardants to polymer matrix. Among these flame retardants, organic phosphorus-containing flame retardants have been attracting much attention because they have excellent compatibility with polymer matrix and low toxicity compared with halogen or inorganic-containing flame retardants. Accordingly, this study aims to design and synthesize an alkoxyamine-based organic phosphorus flame retardant to improve flame retardancy of polylactide which is an eco-friendly polymer used for construction materials.

Synthesis of Benzoic Acid Modified Polyester Containing Phosphorus for Flame-Retardant Coatings (난연도료용 인 함유 벤조산 변성폴리에스테르의 합성)

  • Chung, Dong-Jin;Lee, Ae-Ri;You, Hyuk-Jae;Jung, Choong-Ho;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.51-61
    • /
    • 2004
  • Reaction intermediates PCP/BZA (PBI) and tetramethylene bis(orthophosphate) (TBOP) wer synthesized from polycaprolactone (PCP) and benzoic acid (BZA) and from pyrophosphoric acid and 1,4-butanediol, respectively. Benzoic acid modified polyesters containing phosphorus (APTB-5, -10, -15) were synthesized by polycondensation of the prepared PBI (containing 5, 10, 15wt% of benzoic acid), TBOP, adipic acid, and 1,4-butanediol. The structure and characteristics of APTBs were examined using FT-IR, NMR, GPC, and TGA analysis. The increase of the amount of BZA in the synthesis of APTBs resulted in decrease in average molecular weight and kinematic viscosity. From the TGA analysis of APTBs, it was found that the afterglow decreased with the amount of BZA content at the high temperatures.

Fire Retardancy of Recycled Polyurethane Foam Containing Phosphorus Compounds (인계화합물을 포함한 재활용 폴리우레탄폼의 난연성)

  • Chung, Yeong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.182-189
    • /
    • 2007
  • Used polyurethane was chemically degraded by treatments with flame retardants such as tris(3-chloropropyl) phosphate (TCPP), triethyl phosphate (TEP), and trimethyl phosphate (TMP). The structure of degraded products (DEP) was analyzed by FT-IR and P-NMR and it turned out to be phosphorus containing oligourethanes. Rigid polyurethane foam was produced by using the degraded products (DEP) as flame retardants. The flammability of recycled rigid polyurethane was investigated. The recycled polyurethane shows a reduced flammability over virgin polyurethane. In order to evaluate flame retardant properties of the recycled polyurethane foams with various amounts of DEP, the combustion parameters of the foam was measured by a cone calorimeter. Scanning electron micrograph of recycled PU shows the same uniform cell morphology as virgin PU.