DOI QR코드

DOI QR Code

Design and Characterization of Low Viscosity Epoxy Based on Flame Retardant Phosphorus Epoxy

난연성 인계 에폭시를 기반으로 한 저점도 에폭시 설계 및 특성 분석

  • 박준성 (주식회사 신아티앤씨) ;
  • 우제완 (상명대학교 화공신소재학과)
  • Received : 2021.06.18
  • Accepted : 2021.07.12
  • Published : 2021.08.10

Abstract

Composite materials are substances that are configured to have excellent physical properties by combining the properties of a single substance, and are in the limelight as materials that exceed the performance of metals and polymers. However, it has the disadvantages of long cycle time and high unit price, and much research is being performed to overcome these disadvantages. In this study, we developed an epoxy resin curing agent that can shorten the time required for mass production of composite materials, and tried to expand the applicability of objections by imparting flame retardancy. The epoxy resin used as a basic substance utilized two types of bisphenol F and resorcinol structure, which was further modified using 9,10-dihydro-9-oxa-10-phosphaphenantrene-10-oxide (DOPO) to impart flame retardancy. Triethylphosphate (TEP) and bis [(5-ethyl-2-methyl-1,3,2-dioxaphosphorinan-5-yl)methyl] methyl phosphonate P,P'-dioxide (FR-001) were used as additives, seven kinds of compositions were blended, thermal characteristics (gelation time, glass transition temperature) and flame retardant performance were evaluated. We successfully developed an epoxy matrix that can be applied to high pressure resin transfer molding (HP-RTM) process.

복합재료는 단일물질이 갖는 각각의 특성을 복합화 함으로써 우수한 물성을 갖도록 구성한 물질로 금속 및 고분자의 성능을 뛰어넘는 재료로써 각광받고 있다. 다만, 생산시간이 길고, 단가가 비싼 단점이 있어 이를 극복하기 위해 많은 연구가 진행되고 있다. 본 연구에서는 복합재료의 대량생산 시 시간을 단축할 수 있는 에폭시 수지 경화제를 개발하였고, 난연성을 부여하여 이의 적용성을 확대하고자 하였다. 기본 물질로 사용한 에폭시 수지는 bisphenol F 및 resorcinol 구조의 에폭시 2종을 사용하였으며, 난연성을 부여하기 위하여 9,10-dihydro-9-oxa-10-phosphaphenantrene-10-oxide(DOPO)를 이용하여 변성하였다. 첨가제로는 triethylphosphate (TEP) 및 bis[(5-ethyl-2-methyl-1,3,2-dioxaphosphorinan-5-yl)methyl] methyl phosphonate P,P'-dioxide (FR-001)을 사용하여 7종의 조성물을 배합하였고, 열적 특성(겔화시간, 유리전이온도), 난연 성능을 평가하여 high pressure resin transfer molding (HP-RTM) 공법에 적용 가능한 에폭시 기지재를 개발하였다.

Keywords

References

  1. M. Mrazova, Advanced composite materials of the future in aerospace industry, Incas bulletin, 5(3), 139-150 (2013). https://doi.org/10.13111/2066-8201.2013.5.3.14
  2. K. S. Kim, K. M. Bae, S. Y. Oh, M. K. Seo, C. G. Kang and S. J. Park, Trend of Carbon Fiber-reinforced Composites for Lightweight Vehicles, Elastomers and Compos., 47(1), 65-74 (2012). https://doi.org/10.7473/EC.2012.47.1.065
  3. S. Prashanth, Fiber reinforced composites-a review, J. Mater. Sci. Eng., 6(3), 2-6 (2017).
  4. C. Fais, Lightweight automotive design with HP-RTM. Reinf. Plast., 55(5), 29-31 (2011). https://doi.org/10.1016/S0034-3617(11)70142-4
  5. M. Baskaran, I. Ortiz De Mendibil, M. Sarrionandia, J. Aurrekoetxea, J. Acosta and U. Argarate, Manufacturing Cost Comparison of RTM, HP-RTM and CRTM for an Automotive Roof., ECCM16. Seville, Spain, (2014).
  6. S. Y. Lu, I. Hamerton, Recent developments in the chemistry of halogen-free flame retardant polymers, Prog. Polym. Sci., 27(8), 1661-1712 (2002). https://doi.org/10.1016/S0079-6700(02)00018-7
  7. S. Kemmlein, D. Herzke and R. J. Law, Brominated flame retardants in the European chemicals policy of REACH-Regulation and determination in materials, J. Chromatogr. A, 1216(3), 320-333 (2009). https://doi.org/10.1016/j.chroma.2008.05.085
  8. C. A. de Wit, C. Herzke and K. Vorkamp, Brominated flame retardants in the Arctic environment-trends and new candidates, Sci. Total Environ., 408(15), 2885-2918 (2010). https://doi.org/10.1016/j.scitotenv.2009.08.037
  9. B. Schartel, Phosphorus-based flame retardancy mechanisms-old hat or a starting point for future development?, Materials (Basel), 3(10), 4710-4745 (2010). https://doi.org/10.3390/ma3104710
  10. L. Qu, C. Zhang, P. Li, X. Dai, T. Xu, Y. Sui, J. Gu and Y. Dou, Improved thermal properties of epoxy resin modified with polymethyl methacrylate-microencapsulated phosphorus-nitrogen-containing flame retardant, RSC Adv., 8(52) 29816-29829 (2018). https://doi.org/10.1039/C8RA05911J
  11. S. Basnet, M. Otsuka, C. Sasaki, C. Asada and Y. Nakamura, Functionalization of the active ingredients of Japanese green tea (Camellia sinensis) for the synthesis of bio-based epoxy resin, Ind. Crops Prod., 73, 63-72 (2015). https://doi.org/10.1016/j.indcrop.2015.03.091
  12. A. Riva, G. Camino, L. Fomperie and P. Amigouet, Fire retardant mechanism in intumescent ethylene vinyl acetate compositions, Polym. Degrad. Stab., 82(2) 341-346 (2003). https://doi.org/10.1016/S0141-3910(03)00191-5
  13. A. D. Naik, G. Fontaine, F. Samyn, X. Delva, Y. Bourgeois and S. Bourbigot, Melamine integrated metal phosphates as non-halogenated flame retardants: synergism with aluminium phosphinate for flame retardancy in glass fiber reinforced polyamide 66, Polym. Degrad. Stab., 98(12) 2653-2662 (2013). https://doi.org/10.1016/j.polymdegradstab.2013.09.029