• 제목/요약/키워드: phosphorus doped p-type ZnO

검색결과 10건 처리시간 0.033초

Phosphorus-Doped ZnO 나노로드의 열처리 효과 (Annealing Effect of Phosphorus-Doped ZnO Nanorods Synthesized by Hydrothermal Method)

  • 황성환;문경주;이태일;명재민
    • 한국재료학회지
    • /
    • 제23권5호
    • /
    • pp.255-259
    • /
    • 2013
  • An effect of thermal annealing on activating phosphorus (P) atoms in ZnO nanorods (NR) grown using a hydrothermal process was investigated. $NH_4H_2PO_4$ used as a dopant source reacted with $Zn^{2+}$ ions and $Zn_3(PO_4)_2$ sediment was produced in the solution. The fact that most of the input P elements are concentrated in the $Zn_3(PO_4)_2$ sediment was confirmed using an energy dispersive spectrometer (EDS). After the hydrothermal process, ZnO NRs were synthesized and their PL peaks were exhibited at 405 and 500 nm because P atoms diffused to the ZnO crystal from the $Zn_3(PO_4)_2$ particles. The solubility of the $Zn_3(PO_4)_2$ initially formed sediment varied with the concentration of $NH_4OH$. Before annealing, both the structural and the optical properties of the P-doped ZnO NR were changed by the variation of P doping concentration, which affected the ZnO lattice parameters. At low doping concentration of phosphorus in ZnO crystal, it was determined that a phosphorus atom substituted for a Zn site and interacted with two $V_{Zn}$, resulting in a $P_{Zn}-2V_{Zn}$ complex, which is responsible for p-type conduction. After annealing, a shift of the PL peak was found to have occurred due to the unstable P doping state at high concentration of P, whereas at low concentration there was little shift of PL peak due to the stable P doping state.

Ampoule-tube 법을 이용한 P와 As 도핑 p형 ZnO 박막의 광학적 특성 (Optical properties of Phosphorus- and Arsenic-doped p-type ZnO Thin Films with Ampoule-tube Method)

  • 소순진;이은철;유인성;박춘배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.97-98
    • /
    • 2005
  • To investigate the ZnO thin films which is interested in the next generation of short wavelength LEDs and Lasers, our ZnO thin films were deposited by RF sputtering system. Phosphorus (P) and arsenic (As) were diffused into about 2.1${\mu}m$ ZnO thin films sputtered by RF magnetron sputtering system mn ampoule tube which was below $5\times10^{-7}$ Torr. The dopant sources of phosphorus and arsenic were $Zn_3P_2$ and $ZnAs_2$. Those diffusion was perform at 500, 600, and 700$^{\circ}C$ during 3hr. We find the condition of p-type ZnO whose diffusion condition is 700$^{\circ}C$, 3hr Our p-type ZnO thin film has not only very high carrier concentration of above $10^{19}/cm^3$ but also low resistivity of $5\times10^{-3}{\Omega}cm$.

  • PDF

n-type ZnO 위 수직 성장된 p-type ZnO 나노와이어 구조의 동종접합 다이오드

  • 황성환;이상훈;문경주;이태일;명재민
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.87.1-87.1
    • /
    • 2012
  • 넓은 밴드갭 (3.37eV)과 높은 엑시톤 결합에너지 (60meV)를 가지는 ZnO 물질은 ultra violet light 센서 및 light emitting diode (LED)의 재료로써 많은 연구가 진행되고 있다. 특히 나노와이어 구조를 이용하여 소자를 만들 경우 양자효과와 1차원적 캐리어 수송경로 효과로 인하여 그 특성을 보다 향상 시킬 수 있다. 나노와이어를 이용한 이종접합 p-n 다이오드를 제작하기 위하여 ZnO와 격자상수가 비슷한 GaN, NiO, CoO와 같은 물질들이 나노구조 접합에 많이 쓰이고 있지만, 격자상수 차이로 인해서 접합부분 캐리어 수송효율이 떨어지는 단점을 가지고 있다. n-type과 p-type ZnO를 만들어 동종 접합을 만들 경우 이러한 문제점을 극복할 수 있지만, 도핑되지 않은 ZnO가 n-type을 특성을 나타내기 때문에 안정적인 p-type ZnO 합성에 대한 연구가 필수적이다. 본 연구에서는 안정적인 p-type ZnO 합성을 위해서 수열합성법을 이용하여 phosphorus (P) 도핑을 하였고, 나노와이어 diode 구조를 만들었다. P 도핑으로 인한 격자상수 변화는 x-ray diffraction (XRD)를 사용하여 확인하였고, x-ray photoelectron spectroscopy (XPS)를 통해 도핑 원소를 분석하였으며, 이때의 recification ratio, turn-on voltage 등의 전기적 특성을 평가하였다.

  • PDF

Ampoule-tube 법으로 Phosphorus를 도핑한 P형 ZnO 박막의 광학적 특성 분석 (Alanysis of the Optical Properties of p-type ZnO Thin Films Doped by P based on Ampouele-tube Method)

  • 유인성;오상현;소순진;박춘배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.145-146
    • /
    • 2006
  • The most Important research topic in the development of ZnO LED and LD is the production of p-type ZnO thin film that has minimal stress with outstanding stoichiometric ratio. In this study, Phosphorus diffused into the undoped ZnO thin films using the ampoule-tube method for the production of p-type znO thin films. The undoped ZnO thin films were deposited by RF magnetron sputtering system on $GaAs_{0.6}P_{0.4}$/GaP and Si wafers. 4N Phosphorus (P) was diffused into the undoped ZnO thin films in ampoule-tube which was performed and $630^{\circ}C$ during 3hr. We found the diffusion condition of the conductive ZnO films which had p-type properties with the highest mobility of above 532 $cm^2$/Vs compared with other studies PL spectra measured at 10K for the purpose of analyzing optical properties of p-type ZnO thin film showed strong PL intensity in the UV emission band around 365nm ~ 415nm and 365nm ~ 385nm.

  • PDF

Characteristic of P doped ZnO-based thin film transistor by DC magnetron sputtering

  • Lee, Sih;Moon, Yeon-Keon;Moon, Dae-Yong;Kim, Woong-Sun;Kim, Kyung-Taek;Park, Jong-Wan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.540-542
    • /
    • 2009
  • Phosphorus doped ZnO (PZO) thin films were deposited on $SiO_2$/n-Si substrates using DC magnetron sputtering system varying oxygen partial pressures from 0 to 40 % under Ar atmosphere. The deposited films showed reduced n-type conductivity due to the compensating donor effects by phosphorus dopant. The bias-time stability shows relatively good stability over bias and time comparing to un-doped ZnO-based TFTs.

  • PDF

후열 처리 온도 변화에 따른 phosphorus doped ZnO 박막의 전기적 및 광학적 특성 (Electrical and Optical Properties of phosphorus doped ZnO Thin Films at Various Post-Annealing Temperatures)

  • 한정우;강성준;윤영섭
    • 대한전자공학회논문지SD
    • /
    • 제46권2호
    • /
    • pp.9-14
    • /
    • 2009
  • 본 연구에서는 sapphire 기판위에 P (phosphorus) 도핑된 ZnO 박막을 제작한 후, 산소 분위기에서 후열 처리 온도가 박막의 전기적 및 광학적 특성에 미치는 영향에 대해서 조사하였다. XRD 측정 결과, 후열 처리 온도에 무관하게 모든 박막이 c축 배향성을 나타내었다. Hall 측정 결과, $850^{\circ}C$에서 후열 처리한 박막에서만 p형 전도 특성이 관찰되었다. 이때의 홀 캐리어 농도와 홀 이동도는 각각 $1.18{\times}1016cm^{-3}$$0.96cm^2/Vs$의 값을 나타내었다. 저온 PL 측정 결과, $850^{\circ}C$에서 후열 처리한 박막의 경우 p형 특성을 나타내는 상당량의 억셉터가 관련된 A0X (3.351eV), FA(3.283eV) 및 DAP (3.201eV) 피크가 관찰되었다. 향후 P 도핑된 ZnO 박막의 공정 조건과 후열 처리 조건을 최적화시킨다면, 차세대 광소자에 응용될 수 있는 매우 유망한 재료로 주목받을 것으로 기대된다.

Control of electrical types in the P-doped ZnO thin film by Ar/$O_2$ gas flow ratio

  • Kim, Young-Yi;Han, Won-Suk;Kong, Bo-Hyun;Cho, Hyung-Koun;Kim, Jun-Ho;Lee, Ho-Seoung
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.11-11
    • /
    • 2008
  • ZnO has a very large exciton binding energy (60 meV) as well as thermal and chemical stability, which are expected to allow efficient excitonic emission, even at room temperature. ZnO based electronic devices have attracted increasing interest as the backplanes for applications in the next-generation displays, such as active-matrix liquid crystal displays (AMLCDs) and active-matrix organic light emitting diodes (AMOLEDs), and in solid state lighting systems as a substitution for GaN based light emitting diodes (LEDs). Most of these electronic devices employ the electrical behavior of n-type semiconducting active oxides due to the difficulty in obtaining a p-type film with long-term stability and high performance. p-type ZnO films can be produced by substituting group V elements (N, P, and As) for the O sites or group I elements (Li, Na, and K) for Zn sites. However, the achievement of p-type ZnO is a difficult task due to self-compensation induced from intrinsic donor defects, such as O vacancies (Vo) and Zn interstitials ($Zn_i$), or an unintentional extrinsic donor such as H. Phosphorus (P) doped ZnO thin films were grown on c-sapphire substrates by radio frequency magnetron sputtering with various Ar/ $O_2$ gas ratios. Control of the electrical types in the P-doped ZnO films was achieved by varying the gas ratio with out post-annealing. The P-doped ZnO films grown at a Ar/ $O_2$ ratio of 3/1 showed p-type conductivity with a hole concentration and hole mobility of $10^{-17}cm^{-3}$ and $2.5cm^2/V{\cdot}s$, respectively. X-ray diffraction showed that the ZnO (0002) peak shifted to lower angle due to the positioning of $p^{3-}$ ions with a smaller ionic radius in the $O^{2-}$ sites. This indicates that a p-type mechanism was due to the substitutional Po. The low-temperature photoluminescence of the p-type ZnO films showed p-type related neutral acceptor-bound exciton emission. The p-ZnO/n-Si heterojunction LEO showed typical rectification behavior, which confirmed the p-type characteristics of the ZnO films in the as-deposited status, despite the deep-level related electroluminescence emission.

  • PDF

Ampoule-tube 법으로 P와 As을 도핑한 ZnO/Sapphire 박막의 미세구조와 전기적 특성 (The Microstructures and Electrical Properties of ZnO/Sapphire Thin Films Doped by P and As based on Ampouele-tube Method)

  • 유인성;진은미;소병문;박훈배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.120-121
    • /
    • 2006
  • To investigate the ZnO thin films which are interested in the next generation of short wavelength LEDs and Lasers, the ZnO thin films were deposited by RF magnetron sputtering system. Al sputtering process of ZnO thin films substrate temperature, work pressure respectively is $100^{\circ}C$ and 15 mTorr, and the purity of target is ZnO 5N. The ZnO thin films were in-situ annealed at $600^{\circ}C$, $800^{\circ}C$ in $O_2$ atmosphere. Phosphorus (P) and arsenic (As) were diffused into ZnO thin films sputtered by RF magnetron sputtering system in ampoule tube which was below $5{\times}10^{-7}$ Torr. The dopant sources of phosphorus and arsenic were $Zn_3P_2$ and $ZnAS_2$. Those diffusion was perform at $650^{\circ}C$ during 3hr. We confirmed that p-type properties of ZnO thin films were concerned with dopant sources rather than diffusion temperature.

  • PDF

Growth behavior on initial layer of ZnO:P layers grown by magnetron sputtering with controlled by $O_2$ partial pressure

  • 김영이;안철현;배영숙;김동찬;조형균
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.28.1-28.1
    • /
    • 2009
  • The superior properties of ZnO such as high exciton binding energy, high thermal and chemical stability, low growth temperature and possibility of wet etching process in ZnO have great interest for applications ranging from optoelectronics to chemical sensor. Particularly, vertically well-aligned ZnO nanorods on large areas with good optical and structural properties are of special interest for the fabrication of electronic and optical nanodevices. Currently, low-dimensional ZnO is synthesized by metal-organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), thermal evaporation, and sol.gel growth. Recently, our group has been reported about achievement the growth of Ga-doped ZnO nanorods using ZnO seed layer on p-type Si substrate by RF magnetron sputtering system at high rf power and high growth temperature. However, the crystallinity of nanorods deteriorates due to lattice mismatch between nanorods and Si substrate. Also, in the growth of oxide using sputtering, the oxygen flow ratio relative to argon gas flow is an important growth parameter and significantly affects the structural properties. In this study, Phosphorus (P) doped ZnO nanorods were grown on c-sapphire substrates without seed layer by radio frequency magnetron sputtering with various argon/oxygen gas ratios. The layer change films into nanorods with decreasing oxygen partial pressure. The diameter and length of vertically well-aligned on the c-sapphire substrate are in the range of 51-103 nm and about 725 nm, respectively. The photoluminescence spectra of the nanorods are dominated by intense near band-edge emission with weak deep-level emission.

  • PDF