• Title/Summary/Keyword: phosphatidylinositol-3-kinase

Search Result 194, Processing Time 0.046 seconds

β-Amyrin Ameliorates Alzheimer's Disease-Like Aberrant Synaptic Plasticity in the Mouse Hippocampus

  • Park, Hye Jin;Kwon, Huiyoung;Lee, Ji Hye;Cho, Eunbi;Lee, Young Choon;Moon, Minho;Jun, Mira;Kim, Dong Hyun;Jung, Ji Wook
    • Biomolecules & Therapeutics
    • /
    • v.28 no.1
    • /
    • pp.74-82
    • /
    • 2020
  • Alzheimer's disease (AD) is a progressive and most frequently diagnosed neurodegenerative disorder. However, there is still no drug preventing the progress of this disorder. β-Amyrin, an ingredient of the surface wax of tomato fruit and dandelion coffee, is previously reported to ameliorate memory impairment induced by cholinergic dysfunction. Therefore, we tested whether β-amyrin can prevent AD-like pathology. β-Amyrin blocked amyloid β (Aβ)-induced long-term potentiation (LTP) impairment in the hippocampal slices. Moreover, β-amyrin improved Aβ-induced suppression of phosphatidylinositol-3-kinase (PI3K)/Akt signaling. LY294002, a PI3K inhibitor, blocked the effect of β-amyrin on Aβ-induced LTP impairment. In in vivo experiments, we observed that β-amyrin ameliorated object recognition memory deficit in Aβ-injected AD mice model. Moreover, neurogenesis impairments induced by Aβ was improved by β-amyrin treatment. Taken together, β-amyrin might be a good candidate of treatment or supplement for AD patients.

Inhibitory Effects of Standardized Leonurus japonicus Extract and Its Bioactive Leonurine on TNF-α-Induced Muscle Atrophy in L6 Myotubes

  • Lee, Jiyeon;Kim, Changhee;Lee, Hyerin;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1896-1904
    • /
    • 2020
  • Muscle atrophy, characterized by a reduced number and size of myofibers, occurs due to immobilization, aging, and several chronic diseases. Leonurus japonicus, belonging to the Labiatae family, is widely used as a traditional medicine in Korea, China, and Japan. Previous studies have reported that L. japonicus has various physiological activities, such as anti-bacteria, anti-cancer, and liver protection. Leonurine, which is a major bioactive in L. japonicas, is known to possess biological effects including anti-inflammation, anti-fibrosis, anti-angiogenesis, and anti-diabetes. However, the preventive effects of L. japonicas and leonurine on muscle have not been reported. The current study aimed to determine the inhibitory effects of standardized L. japonicus extract (LJE) and leonurine on muscle atrophy by clarifying their underlying molecular mechanisms in tumor necrosis factor-alpha (TNF-α)-stimulated L6 myotubes. LJE and leonurine stimulated the phosphatidylinositol 3-kinase/Akt pathway that was reduced by TNF-α treatment. LJE and leonurine not only increased the mammalian target of rapamycin pathway for protein anabolism but also decreased the mRNA expression of E3 ubiquitin ligases by blocking the translocation of Forkhead box O, which is closely linked with proteolysis. Additionally, LJE and leonurine alleviated inflammatory responses by downregulating TNF-α and interleukin-6 mRNA expression and reducing the protein expression of nuclear factor-kappa B, a major transcriptional factor of proinflammatory cytokines. Collectively, LJE and leonurine have potential as therapeutic candidates for inhibiting the development of skeletal muscle atrophy by activating the PI3K/Akt pathway and reducing inflammatory responses.

Genome-wide identification and analysis of long noncoding RNAs in longissimus muscle tissue from Kazakh cattle and Xinjiang brown cattle

  • Yan, Xiang-Min;Zhang, Zhe;Liu, Jian-Bo;Li, Na;Yang, Guang-Wei;Luo, Dan;Zhang, Yang;Yuan, Bao;Jiang, Hao;Zhang, Jia-Bao
    • Animal Bioscience
    • /
    • v.34 no.11
    • /
    • pp.1739-1748
    • /
    • 2021
  • Objective: In recent years, long noncoding RNAs (lncRNAs) have been identified in many species, and some of them have been shown to play important roles in muscle development and myogenesis. However, the differences in lncRNAs between Kazakh cattle and Xinjiang brown cattle remain undefined; therefore, we aimed to confirm whether lncRNAs are differentially expressed in the longissimus dorsi between these two types of cattle and whether differentially expressed lncRNAs regulate muscle differentiation. Methods: We used RNA-seq technology to identify lncRNAs in longissimus muscles from these cattle. The expression of lncRNAs were analyzed using StringTie (1.3.1) in terms of the fragments per kilobase of transcript per million mapped reads values of the encoding genes. The differential expression of the transcripts in the two samples were analyzed using the DESeq R software package. The resulting false discovery rate was controlled by the Benjamini and Hochberg's approach. KOBAS software was utilized to measure the expression of different genes in Kyoto encyclopedia of genes and genomes pathways. We randomly selected eight lncRNA genes and validated them by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Results: We found that 182 lncRNA transcripts, including 102 upregulated and 80 downregulated transcripts, were differentially expressed between Kazakh cattle and Xinjiang brown cattle. The results of RT-qPCR were consistent with the sequencing results. Enrichment analysis and functional annotation of the target genes revealed that the differentially expressed lncRNAs were associated with the mitogen-activated protein kinase, Ras, and phosphatidylinositol 3-kinase (PI3k)/Akt signaling pathways. We also constructed a lncRNA/mRNA coexpression network for the PI3k/Akt signaling pathway. Conclusion: Our study provides insights into cattle muscle-associated lncRNAs and will contribute to a more thorough understanding of the molecular mechanism underlying muscle growth and development in cattle.

PS-341-Induced Apoptosis is Related to JNK-Dependent Caspase 3 Activation and It is Negatively Regulated by PI3K/Akt-Mediated Inactivation of Glycogen Synthase Kinase-$3{\beta}$ in Lung Cancer Cells (폐암세포주에서 PS-341에 의한 아포프토시스에서 JNK와 GSK-$3{\beta}$의 역할 및 상호관련성)

  • Lee, Kyoung-Hee;Lee, Choon-Taek;Kim, Young Whan;Han, Sung Koo;Shim, Young-Soo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.57 no.5
    • /
    • pp.449-460
    • /
    • 2004
  • Background : PS-341 is a novel, highly selective and potent proteasome inhibitor, which showed cytotoxicity against some tumor cells. Its anti-tumor activity has been suggested to be associated with modulation of the expression of apoptosis-associated proteins, such as p53, $p21^{WAF/CIP1}$, $p27^{KIP1}$, NF-${\kappa}B$, Bax and Bcl-2. c-Jun N-terminal kinase (JNK) and glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$) are important modulators of apoptosis. However, their role in PS-341-induced apoptosis is unclear. This study was undertaken to elucidate the role of JNK and GSK-$3{\beta}$ in the PS-341-induced apoptosis in lung cancer cells. Method : NCI-H157 and A549 cells were used in the experiments. The cell viability was assayed using the MTT assay and apoptosis was evaluated by proteolysis of PARP. The JNK activity was measured by an in vitro immuno complex kinase assay and by phosphorylation of endogenous c-Jun. The protein expression was evaluated by Western blot analysis. Dominant negative JNK1 (DN-JNK1) and GSK-$3{\beta}$ were overexpressed using plasmid and adenovirus vectors, respectively. Result : PS-341 reduced the cell viability via apoptosis, activated JNK and increased the c-Jun expression. Blocking of the JNK activation by overexpression of DN-JNK1, or pretreatment with SP600125, suppressed the apoptosis induced by PS-341. The activation of caspase 3 was mediated by JNK activation. Blocking of the caspase 3 activation suppressed PS-341-induced apoptosis. PS-341 activated the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, but its blockade enhanced the PS-341-induced cell death via apoptosis. GSK-$3{\beta}$ was inactivated by PS-341 via the PI3K/Akt pathway. Overexpression of constitutively active GSK-$3{\beta}$ enhanced PS-341-induced apoptosis; in contrast, this was suppressed by dominant negative GSK-$3{\beta}$ (DN-GSK-$3{\beta}$). Inactivation of GSK-$3{\beta}$ by pretreatment with lithium chloride or the overexpression of DN-GSK-$3{\beta}$ suppressed both the JNK activation and c-Jun up-regulation induced by PS-341. Conclusion : The JNK/caspase pathway is involved in PS-341-induced apoptosis, which is negatively regulated by the PI3K/Akt-mediated inactivation of GSK-$3{\beta}$ in lung cancer cells.

Lipoteichoic Acid Isolated from Lactobacillus plantarum Inhibits Melanogenesis in B16F10 Mouse Melanoma Cells

  • Kim, Hye Rim;Kim, Hangeun;Jung, Bong Jun;You, Ga Eun;Jang, Soojin;Chung, Dae Kyun
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.163-170
    • /
    • 2015
  • Lipoteichoic acid (LTA) is a major component of the cell wall of Gram-positive bacteria. Its effects on living organisms are different from those of lipopolysaccharide (LPS) found in Gram-negative bacteria. LTA contributes to immune regulatory effects including anti-aging. In this study, we showed that LTA isolated from Lactobacillus plantarum (pLTA) inhibited melanogenesis in B16F10 mouse melanoma cells. pLTA reduced the cellular activity of tyrosinase and the expression of tyrosinase family members in a dose-dependent manner. The expression of microphthalmia- associated transcription factor (MITF), a key factor in the synthesis of melanin, was also decreased by pLTA. Further, we showed that pLTA activated melanogenesis signaling, such as extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinse (PI3K)/AKT. In addition, the expression of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and HuR, which are important RNA-binding proteins (RBPs), was reduced. pLTA likely degrades MITF via regulation of melanogenic signaling and RNA stability of melanogenic proteins, resulting in the reduction of melanin. Thus, our data suggest that pLTA has therapeutic potential for treating hyperpigmentation disorders and can also be used as a cosmetic whitening agent.

Thermal impacts on transcriptome of Pectoralis major muscle collected from commercial broilers, Thai native chickens and its crossbreeds

  • Yuwares Malila;Tanaporn Uengwetwanit;Pornnicha Sanpinit;Wipakarn Songyou;Yanee Srimarut;Sajee Kunhareang
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.61-73
    • /
    • 2024
  • Objective: The main objective of this study was to define molecular mechanisms associated with thermal stress responses of chickens from commercial broilers (BR, Ross 308), Thai native chickens (NT) and crossbreeds between BR×NT (H75). Methods: Twenty days before reaching specific market age, chickens from each breed were divided into control and thermal-stressed groups. The stressed groups were exposed to a cyclic thermal challenge (35℃±1℃ for 6 h, followed by 26℃±1℃ for 18 h) for 20 days. Control group was raised under a constant temperature of 26℃±1℃. Pectoralis major (n = 4) from each group was collected for transcriptome analysis using HiSeq Illumina and analysis of glycogen and lactate. Gene expression patterns between control and thermal-stressed groups were compared within the same breeds. Results: Differentially expressed transcripts of 65, 59, and 246 transcripts for BR, NT, and H75, respectively, were revealed by RNA-Seq and recognized by Kyoto encyclopedia of genes and genomes database. Pathway analysis underlined altered glucose homeostasis and protein metabolisms in all breeds. The signals centered around phosphatidylinositol 3-kinase (PI3K)/Akt signaling, focal adhesion, and MAPK signaling in all breeds with slight differences in molecular signal transduction patterns among the breeds. An extensive apoptosis was underlined for BR. Roles of AMPK, MAPK signaling and regulation of actin cytoskeleton in adaptive response were suggested for H75 and NT chickens. Lower glycogen content was observed in the breast muscles of BR and NT (p<0.01) compared to their control counterparts. Only BR muscle exhibited increased lactate (p<0.01) upon exposure to the stress. Conclusion: The results provided a better comprehension regarding the associated biological pathways in response to the cyclic thermal stress in each breed and in chickens with different growth rates.

IRS-2 Partially Compensates for the Insulin Signal Defects in IRS-1-/- Mice Mediated by miR-33

  • Tang, Chen-Yi;Man, Xiao-Fei;Guo, Yue;Tang, Hao-Neng;Tang, Jun;Zhou, Ci-La;Tan, Shu-Wen;Wang, Min;Zhou, Hou-De
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.123-132
    • /
    • 2017
  • Insulin signaling is coordinated by insulin receptor substrates (IRSs). Many insulin responses, especially for blood glucose metabolism, are mediated primarily through Irs-1 and Irs-2. Irs-1 knockout mice show growth retardation and insulin signaling defects, which can be compensated by other IRSs in vivo; however, the underlying mechanism is not clear. Here, we presented an Irs-1 truncated mutated mouse ($Irs-1^{-/-}$) with growth retardation and subcutaneous adipocyte atrophy. $Irs-1^{-/-}$ mice exhibited mild insulin resistance, as demonstrated by the insulin tolerance test. Phosphatidylinositol 3-kinase (PI3K) activity and phosphorylated Protein Kinase B (PKB/AKT) expression were elevated in liver, skeletal muscle, and subcutaneous adipocytes in Irs-1 deficiency. In addition, the expression of IRS-2 and its phosphorylated version were clearly elevated in liver and skeletal muscle. With miRNA microarray analysis, we found miR-33 was down-regulated in bone marrow stromal cells (BMSCs) of $Irs-1^{-/-}$ mice, while its target gene Irs-2 was up-regulated in vitro studies. In addition, miR-33 was down-regulated in the presence of Irs-1 and which was up-regulated in fasting status. What's more, miR-33 restored its expression in re-feeding status. Meanwhile, miR-33 levels decreased and Irs-2 levels increased in liver, skeletal muscle, and subcutaneous adipocytes of $Irs-1^{-/-}$ mice. In primary cultured liver cells transfected with an miR-33 inhibitor, the expression of IRS-2, PI3K, and phosphorylated-AKT (p-AKT) increased while the opposite results were observed in the presence of an miR-33 mimic. Therefore, decreased miR-33 levels can up-regulate IRS-2 expression, which appears to compensate for the defects of the insulin signaling pathway in Irs-1 deficient mice.

Combined Treatment of Nonsteroidal Anti-inflammatory Drugs and Genistein Synergistically Induces Apoptosis via Induction of NAG-1 in Human Lung Adenocarcinoma A549 Cells (인간 A549 폐암세포에서 비스테로이드성 항염증제와 genistein의 복합처리에 의한 NAG-1 의존적 세포사멸 증진 효과)

  • Kim, Cho-Hee;Kim, Min-Young;Lee, Su-Yeon;Moon, Ji-Young;Han, Song-Iy;Park, Hye-Gyeong;Kang, Ho-Sung
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1073-1080
    • /
    • 2009
  • A number of studies have demonstrated that the regular use of nonsteroidal anti-inflammatory drugs (NSAIDs) can reduce the risks of colorectal, oesophageal and lung cancers. NSAIDs have been shown to exert their anti-cancer effects through inducing apoptosis in cancer cells. The susceptibility of tumor cells to anti-tumor drug-induced apoptosis appears to depend on the balance between pro-apoptotic and anti-apoptotic programs such as nuclear factor kB (NF-kB), phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) and MEK1/2-ERK1/2 pathways. We examined the effects of pro-survival PI3K and ERK1/2 signal pathways on cell cycle arrest and apoptosis in response to NSAIDs including sulindac sulfide and NS398. We show that simultaneous inhibition of the Akt/PKB and ERK1/2 signal cascades could synergistically enhance the potential pro-apoptotic activities of sulindac sulfide and NS398. Similar enhancement was observed in cells treated with sulindac sulfide or NS398 and 100 ${\mu}$M genistein, an inhibitor of receptor tyrosine kinases (RTKs) that are upstream of PI3K and MEK1/2 signaling. We further demonstrate that NAG-1 is induced and plays a critical role(s) in apoptosis by NSAIDs-based combined treatment. In sum, our results show that combinatorialtreatment of sulindac sulfide or NS398 and genistein results in a highlysynergistic induction of apoptotic cell death to increase the chemopreventive effects of the NSAIDs, sulindac sulfide and NS398.

Ginsenoside Rb1 and Rb2 upregulate Akt/mTOR signaling-mediated muscular hypertrophy and myoblast differentiation

  • Go, Ga-Yeon;Jo, Ayoung;Seo, Dong-Wan;Kim, Woo-Young;Kim, Yong Kee;So, Eui-Young;Chen, Qian;Kang, Jong-Sun;Bae, Gyu-Un;Lee, Sang-Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.435-441
    • /
    • 2020
  • Background: As a process of aging, skeletal muscle mass and function gradually decrease. It is reported that ginsenoside Rb1 and Rb2 play a role as AMP-activated protein kinase activator, resulting in regulating glucose homeostasis, and Rb1 reduces oxidative stress in aged skeletal muscles through activating the phosphatidylinositol 3-kinase/Akt/Nrf2 pathway. We examined the effects of Rb1 and Rb2 on differentiation of the muscle stem cells and myotube formation. Methods: C2C12 myoblasts treated with Rb1 and/or Rb2 were differentiated and induced to myotube formation, followed by immunoblotting for myogenic marker proteins, such as myosin heavy chain, MyoD, and myogenin, or immunostaining for myosin heavy chain or immunoprecipitation analysis for heterodimerization of MyoD/E-proteins. Results: Rb1 and Rb2 enhanced myoblast differentiation through accelerating MyoD/E-protein heterodimerization and increased myotube hypertrophy, accompanied by activation of Akt/mammalian target of rapamycin signaling. In addition, Rb1 and Rb2 induced the MyoD-mediated transdifferentiation of the rhabdomyosarcoma cells into myoblasts. Furthermore, co-treatment with Rb1 and Rb2 had synergistically enhanced myoblast differentiation through Akt activation. Conclusion: Rb1 and Rb2 upregulate myotube growth and myogenic differentiation through activating Akt/mammalian target of rapamycin signaling and inducing myogenic conversion of fibroblasts. Thus, our first finding indicates that Rb1 and Rb2 have strong potential as a helpful remedy to prevent and treat muscle atrophy, such as age-related muscular dystrophy.

A Formulated Korean Red Ginseng Extract Inhibited Nitric Oxide Production through Akt- and Mitogen Activated Protein Kinase-dependent Heme Oxygenase-1 Upregulation in Lipoteichoic Acid-stimulated Microglial Cells (홍삼추출액은 lipoteichoic acid로 자극된 소교세포에서 Akt 및 MAPK 의존적으로 heme oxygenase-1 발현을 유도함으로써 NO 생성을 억제함)

  • Shin, Ji Eun;Lee, Kyungmin;Kim, Ji-Hee;Madhi, Iskander;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.402-409
    • /
    • 2019
  • Korean red ginseng made from steaming and drying fresh ginseng has long been used as a traditional herbal medicine due to its effects on the immune, endocrine, and central nerve systems and its anti-inflammatory activity. In this study, we investigated the molecular mechanism responsible for the anti-inflammatory effects of a formulated Korean red ginseng extract (RGE) in response to lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria. RGE inhibited LTA-induced nitric oxide (NO) secretion and inducible nitric oxide synthase (iNOS) expression in BV-2 microglial cells, without affecting cell viability. RGE also inhibited nuclear translocation of nuclear factor kappa B ($NF-{\kappa}B$) p65 and degradation of $I{\kappa}B-{\alpha}$. In addition, RGE increased the expression of heme oxygenase-1 (HO-1) in a dose-dependent manner, and the inhibitory effect of RGE on iNOS expression was abrogated by small interfering RNA-mediated knockdown of HO-1. Moreover, RGE induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. Furthermore, the phosphoinositide-3-kinase (PI-3K) inhibitor and mitogen-activated protein kinase (MAPK) inhibitors suppressed RGE-mediated expression of HO-1, and RGE enhanced the phosphorylation of Akt, extracellular signal-regulated kinases (ERKs), p38, and c-JUN N-terminal kinases (JNKs). These results suggested that RGE suppressed the production of NO, a proinflammatory mediator, by inducing HO-1 expression via PI-3K/Akt- and MAPK-dependent signaling in LTA-stimulated microglia. The findings indicate that RGE could be used for the treatment of neuroinflammation induced by grampositive bacteria and that it may have therapeutic potential for various neuroinflammation-associated disorders.