DOI QR코드

DOI QR Code

Lipoteichoic Acid Isolated from Lactobacillus plantarum Inhibits Melanogenesis in B16F10 Mouse Melanoma Cells

  • Kim, Hye Rim (School of Biotechnology and Institute of Life Science and Resources, College of Life Science, Kyung Hee University) ;
  • Kim, Hangeun (School of Biotechnology and Institute of Life Science and Resources, College of Life Science, Kyung Hee University) ;
  • Jung, Bong Jun (School of Biotechnology and Institute of Life Science and Resources, College of Life Science, Kyung Hee University) ;
  • You, Ga Eun (School of Biotechnology and Institute of Life Science and Resources, College of Life Science, Kyung Hee University) ;
  • Jang, Soojin (Institute Pasteur Korea) ;
  • Chung, Dae Kyun (School of Biotechnology and Institute of Life Science and Resources, College of Life Science, Kyung Hee University)
  • Received : 2014.10.01
  • Accepted : 2014.11.18
  • Published : 2015.02.28

Abstract

Lipoteichoic acid (LTA) is a major component of the cell wall of Gram-positive bacteria. Its effects on living organisms are different from those of lipopolysaccharide (LPS) found in Gram-negative bacteria. LTA contributes to immune regulatory effects including anti-aging. In this study, we showed that LTA isolated from Lactobacillus plantarum (pLTA) inhibited melanogenesis in B16F10 mouse melanoma cells. pLTA reduced the cellular activity of tyrosinase and the expression of tyrosinase family members in a dose-dependent manner. The expression of microphthalmia- associated transcription factor (MITF), a key factor in the synthesis of melanin, was also decreased by pLTA. Further, we showed that pLTA activated melanogenesis signaling, such as extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinse (PI3K)/AKT. In addition, the expression of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and HuR, which are important RNA-binding proteins (RBPs), was reduced. pLTA likely degrades MITF via regulation of melanogenic signaling and RNA stability of melanogenic proteins, resulting in the reduction of melanin. Thus, our data suggest that pLTA has therapeutic potential for treating hyperpigmentation disorders and can also be used as a cosmetic whitening agent.

Keywords

References

  1. Ahn, S.J., Koketsu, M., Ishihara, H., Lee, S.M., Ha SK, Lee KH, Kang, T.H., and Kima, S.Y. (2006). Regulation of melanin synthesis by selenium-containing carbohydrates. Chem. Pharm. Bull. 54, 281-286. https://doi.org/10.1248/cpb.54.281
  2. Bertolotto, C., Abbe, P., Hemesath, T.J., Bille, K., Fisher, D.E., Ortonne, J.P., and Ballotti, R. (1998). Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J. Cell Biol. 142, 827-835. https://doi.org/10.1083/jcb.142.3.827
  3. Boissy, R.E. (2003). Melanosome transfer to and translocation in the keratinocyte. Exp. Dermatol. 12, 5-12. https://doi.org/10.1034/j.1600-0625.12.s2.1.x
  4. Brennan, C.M., and Steitz, J.A. (2001). HuR and mRNA stability. Cell. Mol. Life Sci. 58, 266-277. https://doi.org/10.1007/PL00000854
  5. Brenner, M., and Hearing, V.J. (2008). The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 84, 539-549. https://doi.org/10.1111/j.1751-1097.2007.00226.x
  6. Busca, R., Bertolotto, C., Ortonne, J.P., and Ballotti, R. (1996). Inhibition of the phosphatidylinositol 3-kinase/p70(S6)-kinase pathway induces B16 melanoma cell differentiation. J. Biol. Chem. 271, 31824-31830. https://doi.org/10.1074/jbc.271.50.31824
  7. Chen, C.Y., Xu, N., and Shyu, A.B. (2002). Highly selective actions of HuR in antagonizing AU-rich element-mediated mRNA destabilization. Mol. Cell. Biol. 22, 7268-7278. https://doi.org/10.1128/MCB.22.20.7268-7278.2002
  8. Chung, S.Y., Seo, Y.K., Park, J.M., Seo, M.J., Park, J.K., Kim, J.W., and Park, C.S. (2009). Fermented rice bran downregulates MITF expression and leads to inhibition of alpha-MSH-induced melano-genesis in B16F1 melanoma. Biosci. Biotechnol. Biochem. 73, 1704-1710. https://doi.org/10.1271/bbb.80766
  9. Costin, G.E., and Hearing, V.J. (2007). Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J. 21, 976-994. https://doi.org/10.1096/fj.06-6649rev
  10. Draelos, Z.D. (2007). Skin lightening preparations and the hydroquinone controversy. Dermatol. Ther. 20, 308-313. https://doi.org/10.1111/j.1529-8019.2007.00144.x
  11. Englaro, W., Bertolotto, C., Busca, R., Brunet, A., Pages, G., Ortonne, J.P., and Ballotti, R. (1998). Inhibition of the mitogenactivated protein kinase pathway triggers B16 melanoma cell differentiation. J. Biol. Chem. 273, 9966-9970. https://doi.org/10.1074/jbc.273.16.9966
  12. Hemesath, T.J., Price, E.R., Takemoto, C., Badalian, T., and Fisher, D.E. (1998). MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature 391, 298-301. https://doi.org/10.1038/34681
  13. Hennessy, B.T., Smith, D.L., Ram, P.T., Lu, Y., and Mills, G.B. (2005). Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov. 4, 988-1004. https://doi.org/10.1038/nrd1902
  14. Iozumi, K., Hoganson, G.E., Pennella, R., Everett, M.A., and Fuller, B.B. (1993). Role of tyrosinase as the determinant of pigmentation in cultured human melanocytes. J. Invest. Dermatol. 100, 806-811. https://doi.org/10.1111/1523-1747.ep12476630
  15. Isaac, G. (2002). Role of lipoteichoic acid in infection and inflammation. LANCET Infect. Dis. 2, 171-179. https://doi.org/10.1016/S1473-3099(02)00226-8
  16. Kim, H.G., Kim, N.R., Gim, M.G., Lee, J.M., Lee, S.Y., Ko, M.Y., Kim, J.Y., Han, S.H., and Chung, D.K. (2008a). Lipoteichoic acid isolated from Lactobacillus plantarum inhibits lipopolysaccharideinduced $TNF-{\alpha}$ production in THP-1 cells and endotoxin shock in mice. J. Immunol. 180, 2553-2561. https://doi.org/10.4049/jimmunol.180.4.2553
  17. Kim, H.G., Lee, S.Y., Kim, N.R., Ko, M.Y., Lee, J.M., Yi, T.H,, Chung, S.K., and Chung, D.K. (2008b). Inhibitory Effects of Lactobacillus plantarum Lipoteichoic Acid (LTA) on Staphylococcus aureus LTA-Induced Tumor Necrosis Factor-Alpha Production. J. Microbiol. Biotechnol. 18, 1191-1196.
  18. Kim, S., Jung, S.H., and Cho, C.W. (2008c). Physicochemical studies of a newly synthesized molecule, 6-methyl-3-phenethyl-3,4- dihydro-1H-quinazoline-2-thione (JSH18) for topical formulations. Arch. Pharm. Res. 31, 1363-1368. https://doi.org/10.1007/s12272-001-2118-x
  19. Koo, J.H., Lee, I., Yun, S.K., Kim, H.U., Park, B.H., and Park, J.W. (2010). Saponified evening primrose oil reduces melanogenesis in B16 melanoma cells and reduces UV-induced skin pigmentation in humans. Lipids 45, 401-407. https://doi.org/10.1007/s11745-010-3405-4
  20. Lee, J., Jung, K., Kim, Y.S., and Park, D. (2007). Diosgenin inhibits melanogenesis through the activation of phosphatidylinositol-3- kinase pathway (PI3K) signaling. Life Sci. 81, 249-254. https://doi.org/10.1016/j.lfs.2007.05.009
  21. Lee, J.E., Kim, S.Y., Jeong, Y.M., Yun, H.Y., Baek, K.J., Kwon, N.S., Park, K.C., and Kim, D.S. (2010). The regulatory mechanism of melanogenesis by FTY720, a sphingolipid analogue. Exp. Dermatol. 20, 237-241.
  22. Li, G., Ju, H.K., Chang, H.W., Jahng, Y., Lee, S.H., and Son, J.K. (2003). Melanin biosynthesis inhibitors from the bark of Machilus thunbergii. Biol. Pharm. Bull. 26, 1039-1041. https://doi.org/10.1248/bpb.26.1039
  23. Lin, J.Y., and Fisher, D.E. (2007). Melanocyte biology and skin pigmentation. Nature 445, 843-850. https://doi.org/10.1038/nature05660
  24. Meinkoth, J.L., Montminy, M.R., Fink, J.S., and Feramisco, J.R. (1991). Induction of a cyclic AMP-responsive gene in living cells requires the nuclear factor CREB. Mol. Cell. Biol. 11, 1759-1764. https://doi.org/10.1128/MCB.11.3.1759
  25. Morrison, D.C., Ryan, J.L. (1987). Endotoxins and disease mechanisms. Annu. Rev. Med. 38, 417-432. https://doi.org/10.1146/annurev.me.38.020187.002221
  26. Papadopoulou, C., Patrinou-Georgoula, M., and Guialis, A. (2010). Extensive association of HuR with hnRNP proteins within immunoselected hnRNP and mRNP complexes. Biochim. Biophys. Acta 1804, 692-703. https://doi.org/10.1016/j.bbapap.2009.11.007
  27. Papadopoulou, C., Ganou, V., Patrinou-Georgoula, M., and Guialis, A. (2013). HuR-hnRNP interactions and the effect of cellular stress. Mol. Cell 372, 137-147.
  28. Park, S.Y., Jin, M.L., Kim, Y.H., Kim, Y., and Lee, S.J. (2011). Aromatic- turmerone inhibits ${\alpha}-MSH$ and IBMX-induced melanogenesis by inactivating CREB and MITF signaling pathways. Arch. Dermatol. Res. 303, 737-744. https://doi.org/10.1007/s00403-011-1155-7
  29. Parvez, S., Malik, K.A., Ah Kang, S., and Kim, H.Y. (2006). Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 100, 1171-1185. https://doi.org/10.1111/j.1365-2672.2006.02963.x
  30. Pawelek, J.M., and Chakraborty, A.K. (1998). The enzymology of melanogenesis. (Oxford University Press), pp. 391-400.
  31. Seong, I., Min, H.J., Lee, J.H., Yeo, C.Y., Kang, D.M., Oh, E.S., Hwang, E.S., and Kim, J. (2012). Sox10 controls migration of B16F10 melanoma cells through multiple regulatory target genes. PLoS One 7, e31477. https://doi.org/10.1371/journal.pone.0031477
  32. Sharma, P., Dube, D., Singh, A., Mishra, B., Singh, N., Sinha, M., Dey, S., Kaur, P., Mitra, D.K., et al. (2011). Structural basis of recognition of pathogen-associated molecular patterns and inhibition of proinflammatory cytokines by camel peptidoglycan recognition protein. J. Biol. Chem. 286, 16208-16217. https://doi.org/10.1074/jbc.M111.228163
  33. Shen, T., Heo, S.I., and Wang, M.H. (2012). Involvement of the p38 MAPK and ERK signaling pathway in the anti-melanogenic effect of methyl 3,5-dicaffeoyl quinate in B16F10 mouse melanoma cells. Chem. Biol. Interact. 199, 106-111. https://doi.org/10.1016/j.cbi.2012.06.004
  34. Su, T.R., Lin, J.J., Tsai, C.C., Huang, T.K., Yang, Z.Y., Wu, M.O., Zheng, Y.Q., Su, C.C., and Wu, Y.J. (2013). I Involvement of the p38 MAPK and ERK signaling pathway in the anti-melanogenic effect of methyl 3,5-dicaffeoyl quinate in B16F10 mouse melanoma cells. Int. J. Mol. Sci. 14, 20443-20458. https://doi.org/10.3390/ijms141020443
  35. Unver, N., Freyschmidt-Paul, P., Horster, S., Wenck, H., Stab, F., Blatt, T., and Elsasser, H.P. (2006). Alterations in the epidermaldermal melanin axis and factor XIIIa melanophages in senile lentigo and ageing skin. Br. J. Dermatol. 155, 119-128. https://doi.org/10.1111/j.1365-2133.2006.07210.x
  36. Wen, F., Shen, A., Shanas, R., Bhattacharyya, A., Lian, F., Hostetter, G., and Shi, J. (2010). Higher expression of the heter- ogeneous nuclear ribonucleoprotein k in melanoma. Ann. Surg. Oncol. 17, 2619-2627. https://doi.org/10.1245/s10434-010-1121-1
  37. Xu, W., Gong, L., Haddad, M.M., Bischof, O., Campisi, J., Yeh, E.T., and Medrano, E.E. (2000). Regulation of microphthalmiaassociated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Exp. Cell Res. 255, 135-143. https://doi.org/10.1006/excr.2000.4803
  38. Yagi, A., Kanbara, T., and Morinobu, N. (1987). Inhibition of mushroom- tyrosinase by aloe extract. Planta Med. 53, 517-519. https://doi.org/10.1055/s-2006-962799
  39. Zeng, R.Z., Kim, H.G., Kim, N.R., Lee, H.Y., Jung, B.J., Ko, M.Y., Lee, S.Y., and Chung, D.K. (2010). Protein expression changes in human monocytic THP-1 cells treated with lipoteichoic acid from Lactobacillus plantarum and Staphylococcus aureus. Mol. Cells 6, 585-594.

Cited by

  1. Genome Sequence of Lactobacillus paracasei Strain LC-Ikematsu, Isolated from a Pineapple in Okinawa, Japan vol.5, pp.5, 2017, https://doi.org/10.1128/genomeA.01583-16
  2. Vaginal Lactobacilli Induce Differentiation of Monocytic Precursors Toward Langerhans-like Cells: in Vitro Evidence vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.02437
  3. Inhibitory Effect of Lactobacillus plantarum Extracts on HT-29 Colon Cancer Cell Apoptosis Induced by Staphylococcus aureus and Its Alpha-Toxin vol.25, pp.11, 2015, https://doi.org/10.4014/jmb.1504.04047
  4. Lactobacillus rhamnosus와 Lactobacillus paracasei 복합 배양의 피부 미백 및 주름 개선 활성 증진 vol.41, pp.3, 2015, https://doi.org/10.15230/scsk.2015.41.3.253
  5. Microorganisms as a source of tyrosinase inhibitors: a review vol.67, pp.4, 2017, https://doi.org/10.1007/s13213-017-1261-7
  6. 화종에 따른 국내산 벌꿀 에틸 아세테이트 분획물의 산화방지능 및 멜라닌 생성 억제 효과 vol.50, pp.6, 2018, https://doi.org/10.9721/kjfst.2018.50.6.660
  7. S-Layer Protein of Lactobacillus helveticus SBT2171 Promotes Human β-Defensin 2 Expression via TLR2-JNK Signaling vol.10, pp.None, 2019, https://doi.org/10.3389/fmicb.2019.02414
  8. Lipoteichoic Acid Isolated from Lactobacillus plantarum Maintains Inflammatory Homeostasis through Regulation of Th1- and Th2- Induced Cytokines vol.29, pp.1, 2015, https://doi.org/10.4014/jmb.1809.09001
  9. The Processed Radish Extract Melanogenesis in Humans and Induces Anti-Photoaging Effects in Ultraviolet B-Induced Hairless Mouse Model vol.7, pp.4, 2019, https://doi.org/10.17703/ijact.2019.7.4.125
  10. Korean Red Ginseng extract ameliorates melanogenesis in humans and induces antiphotoaging effects in ultraviolet B-irradiated hairless mice vol.44, pp.3, 2015, https://doi.org/10.1016/j.jgr.2019.05.003
  11. Lactic Acid Bacteria and Lactic Acid for Skin Health and Melanogenesis Inhibition vol.21, pp.7, 2020, https://doi.org/10.2174/1389201021666200109104701
  12. Modulation of the PI3K/Akt/mTOR signaling pathway by probiotics as a fruitful target for orchestrating the immune response vol.13, pp.1, 2015, https://doi.org/10.1080/19490976.2021.1886844