• Title/Summary/Keyword: phosphate corrosion

Search Result 79, Processing Time 0.031 seconds

Research of Corrosion Control Technology for the Product Water of SWRO(Seawater Reverse Osmosis) by using liquid lime (액상소석회를 이용한 SWRO 생산수의 부식제어 연구)

  • Kim, Min-Chul;Hwang, Kyu-Won;Woo, Dal-Sik;Yoon, Seok-Min;Kwak, Myung-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.529-536
    • /
    • 2011
  • In this study, we confirmed that the SWRO(Sea Water Reverse Osmosis) production water has more hard corrosiveness than the tap water by fundamental experiment. According to the result, the target of this study was aimed at developing maintenance and anti-corrosion method. In the early stages of the research, batch tests using mild steel coupons and electrochemical experiments were applied to compare the corrosiveness between SWRO production water and the tap water. After then, two corrosion control methods for SWRO production water were applied. Liquid lime($Ca(OH)_2$) and Carbon Dioxide($CO_2$) were inserted and compared with the combination of liquid lime with phosphate corrosion inhibitor and carbon dioxide. The water qualities were evaluated through LSI(Langelier Saturation Index) and proper injection ratio was deduced by the result. Since then, simulated loop system test were performed to evaluate anti-corrosion effect depending on corrosion inhibitors. Subsequently, carbon steel pipes equipped at the loop system were detached for SEM, EDX and XRD analysis to acquire quantitative and qualitative data of the major corrosion products inside the pipes. In conclusion, the controled groups with anti-corrosion techniques applied were effective by appearing 97.4% and 90.9% of improvements in both case of liquid lime and the liquid lime with a phosphate corrosion Inhibitor. furthermore, major components of scale were iron oxides, on the other hand, protective effect of film formation by calcium carbonate($CaCO_3$) could be confirmed.

Effects of the addition of chelate compound in phosphating surface conditioning solution (인산염 표면 조정액 중의 킬레이트제 첨가 영향)

  • 남궁성;허보영
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.4
    • /
    • pp.281-288
    • /
    • 2001
  • Phosphating treatments have been performed to improve paint adhesion and corrosion resistance of zinc and zinc alloy coated steels for a long time. In this work, the effects of the addition of chelate compound were studied to improve the stability of surface conditioning solution and properties of zinc phosphate films. The coalescence of colloidal Ti-compound and extraneous charged particles (alkaliearth metal cation such as $Mg^{2+}$ , $Ca^{2+}$ ) were suppressed by using a surface conditioning solution with chelate compound. Therefore, after surface conditioning solution containing chelate compound was left standing for one week at room temperature, the formation of a white sediment was decreased comparing to surface conditioning solution without chelate compound. The crystal size of phosphate film was fine and the whiteness value of phosphated zinc coated steel sheets was also high without the decrease of corrosion resistance and anti-patina. It was very effective to use chelate compound improving the stability of surface conditioning solution.

  • PDF

CHEMICAL EFFECTS ON PWR SUMP STRAINER BLOCKAGE AFTER A LOSS-OF-COOLANT ACCIDENT: REVIEW ON U.S. RESEARCH EFFORTS

  • Bahn, Chi Bum
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.295-310
    • /
    • 2013
  • Industry- or regulatory-sponsored research activities on the resolution of Generic Safety Issue (GSI)-191 were reviewed, especially on the chemical effects. Potential chemical effects on the head loss across the debris-loaded sump strainer under a post-accident condition were experimentally evidenced by small-scale bench tests, integrated chemical effects test (ICET), and vertical loop head loss tests. Three main chemical precipitates were identified by WCAP-16530-NP: calcium phosphate, aluminum oxyhydroxide, and sodium aluminum silicate. The former two precipitates were also identified as major chemical precipitates by the ICETs. The assumption that all released calcium would form precipitates is reasonable. CalSil insulation needs to be minimized especially in a plant using trisodium phosphate buffer. The assumption that all released aluminum would form precipitates appears highly conservative because ICETs and other studies suggest substantial solubility of aluminum at high temperature and inhibition of aluminum corrosion by silicate or phosphate. The industry-proposed chemical surrogates are quite effective in increasing the head loss across the debris-loaded bed and more effective than the prototypical aluminum hydroxide precipitates generated by in-situ aluminum corrosion. There appears to be some unresolved potential issues related to GSI-191 chemical effects as identified in NUREG/CR-6988. The United States Nuclear Regulatory Commission, however, concluded that the implications of these issues are either not generically significant or are appropriately addressed, although several issues associated with downstream in-vessel effects remain.

Application of corrosion inhibitors to water distribution systems

  • Park, Yong-Il;Woo, Dal-Sik;Cho, Young-Tai;Jo, Kwan-Hyung;Nam, Sang-Ho
    • Journal of Environmental Science International
    • /
    • v.11 no.5
    • /
    • pp.411-418
    • /
    • 2002
  • The current study evaluated the disinfection efficiency of free chlorine and chloramine for microorganisms on various pipe materials, such as copper, galvanized steel, carbon steel, and stainless steel. In addition, the effect of internal pipe corrosion and corrosion inhibitors on the bactericidal efficiency was evaluated using a simulated loop. For disinfection with a phosphate corrosion inhibitor, chloramination was found to be more effective than chlorination due to its persistence. Free chlorine disinfection was optimized with a high phosphoric acid concentration, while chloramine disinfection was optimized with a high phosphoric acid or low polyphosphate concentration. In simulated copper and galvanized steel loop tests, chloramination with phosphoric acid was demonstrated to be more effective.

Role of chloride ions with Zwitterions and phosphate groups on the improvement of the passive film in alkaline environment (알칼리성 환경에서 부동태 피막 개선에 대한 양쪽성 이온 및 인산염 그룹을 갖는 염화물 이온의 역할)

  • Tran, Duc Thanh;Lee, Han-seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.43-44
    • /
    • 2022
  • In this study, the optimum amount of chloride ions is used to collaborate with hybrid corrosion inhibitor for carbon steel rebar treatment in simulated pore concrete (SCP) solution is discovered. The corrosion inhibition performance of hybrid inhibitors is carried on by open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization (PP). The highest corrosion inhibition resistance is found in case of LP-C2 after 240 h exposure. Surface studies including scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to figure out the surface morphology of the steel rebar treated with hybrid inhibitors in order to collaborate well with electrochemical studies. Anodic type inhibition action was confirmed by potentiodynamic polarization study.

  • PDF

Effects of Na3PO4 Concentration on the Porosity of Plasma Electrolytic Oxidation Coatings Surface on the 6061 Al Alloy, and Subsequent-NaAlO2 Sealing (6061 알루미늄 합금의 플라즈마 전해산화 피막의 표면기공율 및 부식특성에 미치는 Na3PO4 농도 및 NaAlO2 봉공처리의 영향)

  • Song, Euiseok;Kim, Yong-Tae;Choi, Jinsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.117-122
    • /
    • 2019
  • In this study, surface porosity and corrosion resistance of PEO coatings prepared on the 6061 Al alloy were investigated in terms of sodium phosphate ($Na_3PO_4$) concentrations in an alkaline solution and $NaAlO_2$ sealing. The surface morphologies of the PEO coatings clearly show that the coatings film formed in $9g\;L^{-1}$ had the lowest porosity. The $NaAlO_2$ sealing was found to remove micropores and cracks existing on the surface of PEO coatings. As a result, the $NaAlO_2$ sealing resulted in the movement of corrosion potential toward more positive value and lower corrosion current density.

Decay Resistance of Fire-Retardant Treated Wood

  • Lee, Hyun-Mi;Yang, Jae-Kyung;Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.7-13
    • /
    • 2004
  • In this study, the Korean pine wood (Pinus densiflora Sieb. et Zucc) and Italian poplar wood (Populus euramericana Guinier) was treated with a mixture of monoammonium phosphate (MAP) and boric acid. Their usability as fire retardant and as decay-resistant construction and interior materials were evaluated by testing of chemicals, corrosion rate and absorption rate, weight loss and chemical contents. An experiment was performed to compare treated pine wood and Italian poplar wood. According to the results, Italian poplar wood had higher specific gravity and retention of chemicals than pine wood, and treated wood showed higher decay-resistance than untreated one. Weight loss was less in treated wood than untreated one because the degree of decay was lower in the former than the latter. Corrosion rate and absorption rate met the KS standard for wood preservative performance. The chemical contents analysis was carried out to determine the degree of decay and it was found that the preservative effect of chemical treatment was lower in Italian poplar wood than in pine wood.

Experimental study on the electrochemical properties of zwitterion and phosphate-based hybrid inhibitors in reinforced concrete (양쪽성 이온 및 인산염 기반 하이브리드 방청제의 전기화학적 특성에 관한 실험적 연구)

  • Tran, Duc Thanh;Jeong, Min-goo;Lee, Han-seung;Yang, Hyun-min;Singh, Jitendra Kumar
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.37-38
    • /
    • 2022
  • During the past decades, the corrosion of the steel rebar embedded in concrete structure surrounding marine environment is actually problematic and required the suitable preventive method. An eco-friendly corrosion inhibitor mix is investigated to stifle the active corrosion in comparison with other commercial corrosion inhibitors. The hybrid inhibitor enhances the corrosion resistance and the workability of concrete. However, it reduces the compressive strength slightly after 28-day-age. The electrochemical studies and mechanical studies are pointed out the corrosion resistance property, corrosion kinetics, and the mechanical properties of all concrete samples. H-3 is the optimum dose of hybrid inhbitor that meets the demand of both electrochemical property and mechanical property. It performs the noble features due to the formation of optimum amount of P-Zwitterions-(Cl)-Fe complex onto the steel rebar surface.

  • PDF

Characterization of Tribology for Automobile Part of Manganese Phosphate Solution with Addition agent (자동차 부품 Tribology용 인산-망간 화성처리에 있어서 첨가제에 따른 화성피막 특성)

  • Byoun, Young-Min;Park, Jong-Kyu;Seo, Sun-Kyo;Lee, Chi-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.2
    • /
    • pp.56-61
    • /
    • 2015
  • In this study, the wear performance of manganese phosphate coating on SM45C with addition agent of Tartaric acid and Citric acid were investigated. The Surface morphology of manganese phosphate coating was examined by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDS). It is found that Mn, P, Fe, O and C. The crystal structure and thee composition was analysis and determined by using XRD. The XRD results indicated that manganese phosphate coatings are mainly composed of $(Mn,Fe)_5H_2(PO_4)_44H_2O$ and consists of a lot of close packed lump crystalline. Based on the time dependence of morphology and the weight of manganese phosphate coating, it shows that the phosphating process mainly includes three stages: corrosion of the substrate, creation and growth of phosphate crystal nucleus and thickening of manganese phosphate coating. The wear tests were performed in a ball on disc apparatus as per ASTM G-99 Standard. It was showed that the initial wear was quite high followed by low sludge.

Performance Research of a Jacket Cooling Water System in a Diesel Electric Generation (디젤발전 자켓냉각시스템 열성능 향상 연구)

  • Lee, Jae-Keun;Moon, Jeon-Soo;Yoon, Seok-Won;Park, Pill-Yang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.534-539
    • /
    • 2009
  • One of the most efficient techniques improving the heat transfer performance of a diesel electric generation is a corrosion control in jacket cooling water system. The environmental parameters most affecting corrosion are dissolved salt concentration, temperature, and pH of cooling water. No corrosion occurs in carbon steel probe at pH 11 in normal operating condition of diesel electric generation cooling water. pH control agent in this study is trisodium phosphate. pH control appears to be the most convenient way to enhance the thermal performance of a diesel electric generation.