• 제목/요약/키워드: phenotype data

검색결과 219건 처리시간 0.027초

마이크로어레이 자료분석에서 모수적 방법을 이용한 유전자군의 유의성 검정 (Developing a Parametric Method for Testing the Significance of Gene Sets in Microarray Data Analysis)

  • 이선호;이승규;이광현
    • Communications for Statistical Applications and Methods
    • /
    • 제16권3호
    • /
    • pp.397-408
    • /
    • 2009
  • 마이크로어레이 기술은 수만 개 유전자의 발현 패턴을 동시에 관찰하는 것을 가능하게 하였고, 이들을 하나씩 검정하여 찾아낸 특이발현 현상을 보이는 유전자를 중심으로 질병의 진단, 치료법 정립과 신약 개발을 위한 기본 정보를 확립하였다. 그러나 개별 유전자분석의 여러 문제점이 발견되면서 유전자들을 생물학적 대사경로나 염색체 위치가 같은 것끼리 묶은 집단을 분석하여 질병의 발생이나 생존에 영향을 미치는 집단을 찾는 방법이 제시되었다. 이러한 유전자 집단의 유의성에 대한 연구는 2002년에 MIT에서 비롯되어 GSEA, SAM-GS와 중심극한 정리의 개념을 이용한 모수적 방법인 PAGE 등이 사용되고 있다. 본 논문에서는 이들 통계량의 구조적 한계를 극복하고 계산이 간단한 새로운 모수적 방법을 제안하고 자료 분석을 통하여 효율성을 보였다.

아토피성 피부질환 동물 모델 NC/Nga 생쥐에서 내재면역 T와 B 세포의 변형 (Alteration of Innate Immune T and B Cells in the NC/Nga Mouse)

  • 김정은;김효정;김태윤;박세호;홍석만
    • IMMUNE NETWORK
    • /
    • 제5권3호
    • /
    • pp.137-143
    • /
    • 2005
  • Background: Millions of people in the world are suffering from atopic dermatitis (AD), which is a chronic inflammatory skin disease triggered by Th2 immune responses. The NC/Nga mouse is the most extensively studied animal model of AD. Like human AD, NC/Nga mice demonstrate increased levels of IgE, a hallmark of Th2 immune responses. Adaptive immunity cannot be generated without help of innate immunity. Especially natural killer T (NKT) cells and marginal zone B (MZB) cells have been known to play important roles in linking innate immunity to adaptive immunity. Methods: Through flow cytometric analysis and ELISA assay, we investigated whether these lymphocytes might be altered in number in NC/Nga mice. Results: Our data demonstrated that the number of NKT cells was reduced in NC/Nga mice and IFN${\gamma}$ production by NKT cells upon ${\alpha}-GalCer$ stimulation decreased to the levels of CD1d KO mice lacking in NKT cells. However, reduction of NKT cells in NC/Nga mice was not due to CD1d expression, which was normal in the thymus. Interestingly, there was a significant increase of $CD1d^{high}B220^+$ cells in the spleen of NC/Nga mice. Further, we confirmed that $CD1d^{high}B220^+$ cells are B cells, not dendritic cells. These $CD1d^{high}B220^+$ B cells show $IgM^{high}CD21^{high}CD23^{low}$, a characteristic phenotype of MZB cells. Conclusion: We provide the evidence that there are decreased activities of NKT cells and increased number of MZB cells in the NC/Nga mice. Our findings may thus explain why NC/Nga mice are susceptible to AD.

Mutational Analysis of Korean Patients with Phenylketonuria

  • Koo, Soo Kyung;Lee, Kwang-Soo;Jung, Sung-Chul;Lee, Jong-Eun;Lee, Dong Hwan
    • 대한유전성대사질환학회지
    • /
    • 제4권1호
    • /
    • pp.5-12
    • /
    • 2004
  • Purpose Phenylketonuria is an inborn error of metabolism, which is inherited as an autosomal recessive trait. PKU is resulting from deficiency of phenylalanine hydroxylase. PAH gene spans about 90 kb on chromosome 12q and comprises 13 exons. In order to define the genetic basis of PKU and the frequencies and distribution of PAH mutations in the Korean population, we analyzed PAH gene in independent 80 patients with PKU. Methods All 13 exons including exon-intron boundaries and 2 kb of 5' upstream region of the PAH gene were analyzed by PCR-direct sequencing methods. Results PAH gene analysis revealed 39 different mutations including 10 novel mutations. The novel mutations consisted of 9 missense mutations (P69S, G103S, N207D, T278S, P281A, L293M, G332V, S391I and A447P) and a novel splice site variant (IVS10-3C>G). R243Q, IVS4-1G>A, and E6-96A>G were the most relevant mutations and they accounted in the whole for 38% of the mutant alleles identified in this study. We also observed that. $BH_4$ responsibility was. associated with genotype of R241C, R53H and R408Q. Conc1ustion Our present study with 80 participants extends the previous results to more comprehensive understanding of PAH allele distribution and frequency in Koreans. Although Korean mutation profile of PAH is similar to those of the nearest oriental populations (Japanese, Chinese, and Taiwanese), several different characteristic features are revealed. The characterization of the genotype-phenotype relationship was also performed. Our data would be very useful information for diagnosis, genetic counseling and planning of dietary and therapeutic strategies in Korean PAH patients.

  • PDF

FBW7 Upregulation Enhances Cisplatin Cytotoxicity in Non-small Cell Lung Cancer Cells

  • Yu, Hao-Gang;Wei, Wei;Xia, Li-Hong;Han, Wei-Li;Zhao, Peng;Wu, Sheng-Jun;Li, Wei-Dong;Chen, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6321-6326
    • /
    • 2013
  • Introduction: Lung cancer is extremely harmful to human health and has one of the highest worldwide incidences of all malignant tumors. Approximately 80% of lung cancers are classified as non-small cell lung cancers (NSCLCs). Cisplatin-based multidrug chemotherapy regimen is standard for such lesions, but drug resistance is an increasing problem. F-box/WD repeat-containing protein 7 (FBW7) is a member of the F-box protein family that regulates cell cycle progression, and cell growth and differentiation. FBW7 also functions as a tumor suppressor. Methods: We used cell viability assays, Western blotting, and immunofluorescence combined with siRNA interference or plasmid transfection to investigate the underlying mechanism of cisplatin resistance in NSCLC cells. Results: We found that FBW7 upregulation significantly increased cisplatin chemosensitivity and that cells expressing low levels of FBW7, such as NCI-H1299 cells, have a mesenchymal phenotype. Furthermore, siRNA-mediated silencing or plasmid-mediated upregulation of FBW7 resulted in altered epithelial-mesenchymal transition (EMT) patterns in NSCLC cells. These data support a role for FBW7 in regulating the EMT in NSCLC cells. Conclusion: FBW7 is a potential drug target for combating drug resistance and regulating the EMT in NSCLC cells.

Contrasting rice sub-populations to tocols ratio associated with seed longevity

  • Lee, Jae-Sung;Kwak, Jieun;Yoon, Mi-Ra;Lee, Jeom-Sig;Hay, Fiona R.
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.31-31
    • /
    • 2017
  • Understanding the mechanism(s) to overcome or prevent seed ageing deterioration during storage is of fundamental interest to seed physiologists. Vitamin E (tocols) is known as a key metabolite to efficiently scavenge lipid peroxy radicals which cause membrane breakdown resulting in seed ageing. However, in rice research this hypothesis has been tested for very few lines only without considering intraspecific variation in genomic structure. Here, we present a correlation study between tocols and seed longevity using a diverse rice panel. Seeds of 20 rice accessions held in the International Rice Genebank at the International Rice Research Institute, representing aus, indica, temperate japonica and tropical japonica subpopulations, were used for tocols analysis (quantification of ${\alpha}$-, ${\beta}$-, ${\gamma}$-, ${\delta}$-tocopherol/tocotrienol by ultra performance liquid chromatography) and storage experiments at $45^{\circ}C$ and 10.9% seed moisture content (sample taken for germination testing every 3 days up to 60 days). To examine interactions between DNA sequences and phenotype, the 700k high-density single-nucleotide polymorphism marker data-set was utilized. Both seed longevity (time for viability to fall to 50%; $p_{50}$) and tocols content varied across subpopulations due to heterogeneity in the genetic architecture. Among eight types of tocol homologues, ${\alpha}$-tocopherol and ${\gamma}$-tocotrienol were significantly correlated with $p_{50}$ (negatively and positively, respectively). While temperate japonica varieties were most abundant in ${\alpha}$-tocopherol, indica varieties recorded 1.3 to 1.7-fold higher ${\gamma}$-tocotrienol than those of other subpopulations. It was highlighted that specific ratio of tocol homologues rather than total tocols content plays an important role in the seed longevity mechanism.

  • PDF

Plant breeding in the 21st century: Molecular breeding and high throughput phenotyping

  • Sorrells, Mark E.
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.14-14
    • /
    • 2017
  • The discipline of plant breeding is experiencing a renaissance impacting crop improvement as a result of new technologies, however fundamental questions remain for predicting the phenotype and how the environment and genetics shape it. Inexpensive DNA sequencing, genotyping, new statistical methods, high throughput phenotyping and gene-editing are revolutionizing breeding methods and strategies for improving both quantitative and qualitative traits. Genomic selection (GS) models use genome-wide markers to predict performance for both phenotyped and non-phenotyped individuals. Aerial and ground imaging systems generate data on correlated traits such as canopy temperature and normalized difference vegetative index that can be combined with genotypes in multivariate models to further increase prediction accuracy and reduce the cost of advanced trials with limited replication in time and space. Design of a GS training population is crucial to the accuracy of prediction models and can be affected by many factors including population structure and composition. Prediction models can incorporate performance over multiple environments and assess GxE effects to identify a highly predictive subset of environments. We have developed a methodology for analyzing unbalanced datasets using genome-wide marker effects to group environments and identify outlier environments. Environmental covariates can be identified using a crop model and used in a GS model to predict GxE in unobserved environments and to predict performance in climate change scenarios. These new tools and knowledge challenge the plant breeder to ask the right questions and choose the tools that are appropriate for their crop and target traits. Contemporary plant breeding requires teams of people with expertise in genetics, phenotyping and statistics to improve efficiency and increase prediction accuracy in terms of genotypes, experimental design and environment sampling.

  • PDF

Whole Genome Resequencing of Heugu (Korean Black Cattle) for the Genome-Wide SNP Discovery

  • Choi, Jung-Woo;Chung, Won-Hyong;Lee, Kyung-Tai;Choi, Jae-Won;Jung, Kyoung-Sub;Cho, Yongmin;Kim, Namshin;Kim, Tae-Hun
    • 한국축산식품학회지
    • /
    • 제33권6호
    • /
    • pp.715-722
    • /
    • 2013
  • Heugu (Korea Black Cattle) is one of the indigenous cattle breeds in Korea; however there has been severe lack of genomic studies on the breed. In this study, we report the first whole genome resequencing of Heugu at higher sequence coverage using Illumina HiSeq 2000 platform. More than 153.6 Giga base pairs sequence was obtained, of which 97% of the reads were mapped to the bovine reference sequence assembly (UMD 3.1). The number of non-redundantly mapped sequence reads corresponds to approximately 28.9-fold coverage across the genome. From these data, we identified a total of over six million single nucleotide polymorphisms (SNPs), of which 29.4% were found to be novel using the single nucleotide polymorphism database build 137. Extensive annotation was performed on all the detected SNPs, showing that most of SNPs were located in intergenic regions (70.7%), which is well corresponded with previous studies. Of the total SNPs, we identified substantial numbers of non-synonymous SNPs (13,979) in 5,999 genes, which could potentially affect meat quality traits in cattle. These results provide genome-wide SNPs that can serve as useful genetic tools and as candidates in searches for phenotype-altering DNA difference implicated with meat quality traits in cattle. The importance of this study can be further pronounced with the first whole genome sequencing of the valuable local genetic resource to be used in further genomic comparison studies with diverse cattle breeds.

Overexpression of Semaphorin4D Indicates Poor Prognosis and Prompts Monocyte Differentiation toward M2 Macrophages in Epithelial Ovarian Cancer

  • Chen, Ying;Zhang, Lei;Lv, Rui;Zhang, Wen-Qi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5883-5890
    • /
    • 2013
  • Previously, we demonstrated overexpression of semaphorin4D (SEMA4D, CD100) to be closely related to tumor angiogenesis in epithelial ovarian cancers (EOCs). However, the function and expression of SEMA4D in the EOC microenvironment has yet to be clarified in detail. In this study, we confirmed that overexpression of SEMA4D in primary tumors and ascites was related to low differentiation, platinum resistance and a refractory status (P<0.05), while high M2 macrophage count and percentage were evident in EOC patients with advanced FIGO stage and platinum resistance (P<0.05), using immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), and fluorescence-activated cell sorting (FACS), respectively. The data showed correlations of SEMA4D expression and M2 macrophage counts in primary tumors and M2 macrophage percentage in ascites (r=0.281 and 0.355, each P<0.05). In the Cox proportional hazard mode, SEMA4D expression was an independent indicator of overall survival (OS) and progression-free survival (PFS) for EOC patients. Furthermore, higher expression of SEMA4D in ovarian cancer cell lines (SKOV3, A2780, and SW626) and their supernatants were found than that in a human primary cultured ovarian cell and its supernatant by reversed transcript PCR (RT-PCR), Western blotting and ELISA, respectively. Interestingly, peripheral blood monocytes (MOs) tended towards the M2-polarized macrophage phenotype ($CD163^{high}$) in vitro after human recombined soluble SEMA4D protein stimulation. These findings suggest that SEMA4D might possibly serve as a reliable tool for early and accurate prediction of EOC poor prognosis and could playan important role in promoting tumor dissemination and metastasis in the EOC microenvironment. Thus SEMA4D and its role in macrophage polarization in EOC warrants further study.

Adoptive Immunotherapy for Small Cell Lung Cancer by Expanded Activated Autologous Lymphocytes: a Retrospective Clinical Analysis

  • Zhang, Guo-Qing;Li, Fang;Sun, Sheng-Jie;Hu, Yi;Wang, Gang;Wang, Yu;Cui, Xiao-Xia;Jiao, Shun-Chang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권4호
    • /
    • pp.1487-1494
    • /
    • 2015
  • Background: To investigate the clinical efficacy of expanded activated autologous lymphocytes (EAAL) in patients with small cell lung cancer (SCLC). Materials and Methods: A total of 32 SCLC patients were selected and randomly divided into EAAL treatment and control groups, 16 cases in each. EAAL were obtained by proliferation of peripheral blood mononuclear cells (PBMCs) of patients followed by phenotype determination. Clinical data of all patients were recorded. Patients of both groups were followed up and the overall survival (OS) were compared retrospectively. Results: After culture and proliferation in vitro, the percentages of $CD3^+$, $CD3^+CD8^+$, $CD45RO^+$, $CD28^+$, $CD29^+$, $CD8^+CD28^+$ and $CD3^+CD16^+/CD56^+$ cells increased markedly (p<0.05). The OS of the EAAL treatment group was longer than that of control group, but the difference was not statistically significant (p=0.060, HR=0.487, 95%CI 0.228~1.037). 1- to 3-year survival rates in EAAL treatment group were longer than those in control group, but there was still no significant difference (p>0.05). COX multivariate regression analysis showed that the number of chemotherapy cycles and the application of EAAL immunotherapy were independent prognostic factors for SCLC patients. The OS in females and chemotherapy${\leq}6$ cycles were obviously prolonged after EAAL immunotherapy. Conclusions: In vitro induction and proliferation of EAAL is easy and biologically safe. Generally, EAAL adoptive immunotherapy can evidently prolong the OS of SCLC patients.

Primary Extra Nodal Non Hodgkin Lymphoma: A 5 Year Retrospective Analysis

  • Padhi, Somanath;Paul, Tara Roshni;Challa, Sundaram;Prayaga, Aruna K.;Rajappa, Senthil;Raghunadharao, D.;Sarangi, Rajlaxmi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권10호
    • /
    • pp.4889-4895
    • /
    • 2012
  • Background and Aim: The incidence of extra nodal non Hodgkin lymphoma (ENL) is rising throughout the world. However, data regarding ENL as a group is limited. The aim was to study the epidemiological and histomorphological trends of primary ENL (pENL) in India. Material and Methods: The biopsy materials from sixty eight patients with pENL (45 male, 23 female, M:F= 1.9:1), diagnosed over a five year period (2005-2009), were analysed and pathologically reclassified according to the World Health Organization (WHO) classification, 2008 criteria. Results: Primary extra nodal non Hodgkin lymphomas constituted 22.0% (68/308) of all non Hodgkin lymphomas (NHL). The mean age at presentation for pENL and primary nodal NHL was 43 years and 58 years, respectively with a male predilection (M: F=2:1). Central nervous system (CNS) constituted the most common extranodal site (20/68, 29.5%) followed by gastrointestinal tract (17/68, 25%), and nose/nasopharynx (8/68, 11.8%). Diffuse large B-cell lymphoma (DLBCL, not otherwise specified), extranodal marginal lymphoma of mucosa associated lymphoid tissue (MALT) type, and B cell NHL unclassified (U) were the three most common histological types observed. T-cell phenotype was rarely noted (4%). Follicular lymphomas and anaplastic large cell lymphoma, seen among nodal NHL, were absent at extra nodal sites. Majority (41/68, 60%) of the patients with pENL were immunocompetent and 55% were in stage I-II with favorable prognosis. Conclusion: Central nervous system was the most common site of ENL, followed by gastrointestinal tract. Majority of pENL occurred in immunocompetent hosts with a favorable prognosis.