Jo, Jeong Won;Lee, Min Hye;Lee, Hong Ro;Chung, Yong Suk;Baek, Jeong Ho;Kim, Kyung Hwan;Lee, Chang Woo
Journal of Korea Society of Industrial Information Systems
/
v.24
no.4
/
pp.1-8
/
2019
Plant phenomics is a technique for observing and analyzing morphological features in order to select plant varieties of excellent traits. The conventional methods is difficult to apply to the phenomics system. because the color threshold value must be manually changed according to the detection target. In this paper, we propose the convolution neural network (CNN) structure that can automatically segment plants from the background for the phenomics system. The LeafNet consists of nine convolution layers and a sigmoid activation function for determining the presence of plants. As a result of the learning using the LeafNet, we obtained a precision of 98.0% and a recall rate of 90.3% for the plant seedlings images. This confirms the applicability of the phenomics system.
Food security has been a main global issue due to climate changes and growing world population expected to 9 billion by 2050. While biodiversity is becoming more highlight, breeders are confronting shortage of various genetic materials needed for new variety to tackle food shortage challenge. Though biotechnology is still under debate on potential risk to human and environment, it is considered as one of alternative tools to address food supply issue for its potential to create a number of variations in genetic resource. The new technology, phenomics, is developing to improve efficiency of crop improvement. Phenomics is concerned with the measurement of phenomes which are the physical, morphological, physiological and/or biochemical traits of organisms as they change in response to genetic mutation and environmental influences. It can be served to provide better understanding of phenotypes at whole plant. For last decades, high-throughput screening (HTS) systems have been developed to measure phenomes, rapidly and quantitatively. Imaging technology such as thermal and chlorophyll fluorescence imaging systems is an area of HTS which has been used in agriculture. In this article, we review the current statues of high-throughput screening system in phenomics and its application for crop improvement.
Remote Sensing (RS) is a technique to obtain necessary information in a non-contact and non-destructive method by using various sensors on the surface, water or atmospheric phenomena. These techniques combine elements such as sensors, and platform and information communication technology (ICT) for mounting the sensor. ICT has contributed significantly to the success of smart agriculture through quantification and measurement of environmental factors and information such as weather, crop and soil management to distribution and consumption stage, as well as the production stage by the cloud computer. Remote sensing techniques, including non-destructive non-contact bioimaging (remote imaging) is required to measure the plant function. In addition, bioimaging study in plant science is performed at the gene, cellular and individual plant level. Recently, bioimaging technology is considered the latest phenomics that identifies the relationship between the genotype and environment for distinguishing phenotypes. In this review, trends in remote sensing in plants, plants diagnostics and response to environment and status of plants phonemics research were presented.
Omari, Mohammad Kamran;Lee, Jayoung;Faqeerzada, Mohammad Akbar;Joshi, Rahul;Park, Eunsoo;Cho, Byoung-Kwan
Korean Journal of Agricultural Science
/
v.47
no.1
/
pp.119-130
/
2020
With the current rapid growth and increase in the world's population, the demand for nutritious food and fibers and fuel will increase. Therefore, there is a serious need for the use of breeding programs with the full potential to produce high-yielding crops. However, existing breeding techniques are unable to meet the demand criteria even though genotyping techniques have significantly progressed with the discovery of molecular markers and next-generation sequencing tools, and conventional phenotyping techniques lag behind. Well-organized high-throughput plant phenotyping platforms have been established recently and developed in different parts of the world to address this problem. These platforms use several imaging techniques and technologies to acquire data for quantitative studies related to plant growth, yield, and adaptation to various types of abiotic or biotic stresses (drought, nutrient, disease, salinity, etc.). Phenotyping has become an impediment in genomics studies of plant breeding. In recent years, phenomics, an emerging domain that entails characterizing the full set of phenotypes in a given species, has appeared as a novel approach to enhance genomics data in breeding programs. Imaging techniques are of substantial importance in phenomics. In this study, the importance of current imaging technologies and their applications in plant phenotyping are reviewed, and their advantages and limitations in phenomics are highlighted.
The demand for crop production is increasingly becoming steeper due to the rapid population growth. As a result, breeding cycles should be faster than ever before. However, the current breeding methods cannot meet this requirement because traditional phenotyping methods lag far behind even though genotyping methods have been drastically developed with the advent of next-generation sequencing technology over a short period of time. Consequently, phenotyping has become a bottleneck in large-scale genomics-based plant breeding studies. Recently, however, phenomics, a new discipline involving the characterization of a full set of phenotypes in a given species, has emerged as an alternative technology to come up with exponentially increasing genomic data in plant breeding programs. There are many advantages for using new technologies in phenomics. Yet, the necessity of diverse man power and huge funding for cutting-edge equipment prevent many researchers who are interested in this area from adopting this new technique in their research programs. Currently, only a limited number of groups mostly in developed countries have initiated phenomic studies using high throughput methods. In this short article, we describe the strategies to compete with those advanced groups using limited resources in developing countries, followed by a brief introduction of high throughput phenotyping.
Gwan Ik, Park;Kyu Dong, Sim;Min Su, Kyeon;Sang Hwa, Lee;Jeong Hyun, Baek;Jong-Il, Park
Journal of Broadcast Engineering
/
v.27
no.6
/
pp.923-935
/
2022
This paper deals with detection and classification of leaf diseases for phenomics systems. As the smart farm systems of plants are increased, It is important to determine quickly the abnormal growth of plants without supervisors. This paper considers the color distribution and shape information of leaf diseases, and designs two deep leaning networks in training the leaf diseases. In the first step, color distribution of input image is analyzed for possible diseases. In the second step, the image is first partitioned into small segments using mean shift clustering, and the color information of each segment is inspected by the proposed Color Network. When a segment is determined as disease, the shape parameters of the segment are extracted and inspected by proposed Shape Network to classify the leaf disease types in the third step. According to the experiments with two types of diseases (frogeye/rust and tipburn) for apple leaves and iceberg, the leaf diseases are detected with 92.3% recall for a segment and with 99.3% recall for an input image where there are usually more than two disease segments. The proposed method is useful for detecting leaf diseases quickly in the smart farm environment, and is extendible to various types of new plants and leaf diseases without additional learning.
Park, GwanIk;Sim, Kyudong;Baek, Jeonghyun;Lee, Sanghwa;Park, Jong-Il
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.186-189
/
2022
스마트팜 피노믹스 시스템은 재배하는 식물의 성장조건에 맞게 생육 환경을 일정하게 유지하고 관리하는 장치이지만, 그럼에도 불구하고 식물의 질병은 여러 가지 이유로 발생할 수 있다. 본 논문에서는 스마트팜 피노믹스 시스템에서 Mean Shift Segmentation 을 통한 식물의 질병을 자동으로 검출하는 식물 질병 검출 알고리즘을 제안한다. 식물의 질병 정도가 임의의 임계값을 넘을 경우, 해당 식물을 질병의 정도가 심한 식물로 판별하고, 적절한 수확시기를 결정하여 더 나은 상품성을 가진 식물을 재배할 수 있는 방법을 제시한다. 또한 식물의 질병이 급격하게 심해지는 기간을 확인하여 인간의 개입 없이 완전히 자동화된 시스템으로 더욱 세심하고 효율적인 식물 재배를 가능하게 함을 제시한다. 본 논문에서는 아이스버그(양상추)에 대한 재배 환경을 구축하여 생장 기간에 아이스버그에 발생하는 질병인 팁번 현상을 검출하는 실험을 진행하였다. 본 논문에서 제안한 방법은 다른 종류의 다양한 식물에서도 질병 검출이 가능하며, 스마트팜 피노믹스 시스템에서 질병 검출의 자동화를 위한 한 가지 방법으로 활용될 수 있을 것으로 기대된다.
The leaf temperature is principally regulated by the opening and closing of stomata that is sensitive to various kinds of plant physiological stress. Thus, the analysis of thermal imagery, one of remote sensing technique, will be useful to detect crop physiological condition on smart farm system and phenomics platform. However, there are few case studies using a thermal imaging camera on the agricultural application. In this study, three cases are presented: the effect of lime fertilizer on the rice, the different physiological properties of soybean under shading condition, and the screening of soybean breeds for salinity tolerance characteristic. The leaf temperature measured by thermal imaging camera on the three cases was used effectively to the physiological change and characteristics. However, the thermal imagery analysis requires considering the accuracy of measured temperature and the weather conditions that affects to the leaf temperature.
In the present study, the seed color of 200 common bean genetic resources was analyzed and located on the HTML color chart to classify these resources according to color characteristics. This classification method predicts the components of seed and may serve as a new method for efficiently using secured genetic resources. The imagary data of common bean exhibiting various seed colors were expressed using the HTML color chart. According to the proposed classification method, the seed color was distributed in seven categories: yellow-green, yellow, brown, red, white, gray, and indigo. In addition, the distribution of each seed color was according to its concentration. The distribution by concentration was the highest for red, whereas the distribution of gray and yellow-green was not concentration-dependent. As the dominant pigments based on color distribution, chlorophylls in yellow-green; carotenoids in yellow; and anthocyanins in brown, red, white, gray, and indigo significantly affected seed color. When expressed objectively, seed colors can be applied to the systematic management, breeding, and cultivation of genetic resources and can be useful for marketing or developing products of desired colors. This method can also be applied to other crops.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.