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Abstract
With the current rapid growth and increase in the world’s population, the demand for 
nutritious food and fibers and fuel will increase. Therefore, there is a serious need for the 
use of breeding programs with the full potential to produce high-yielding crops. However, 
existing breeding techniques are unable to meet the demand criteria even though genotyping 
techniques have significantly progressed with the discovery of molecular markers and next-
generation sequencing tools, and conventional phenotyping techniques lag behind. Well-
organized high-throughput plant phenotyping platforms have been established recently and 
developed in different parts of the world to address this problem. These platforms use several 
imaging techniques and technologies to acquire data for quantitative studies related to plant 
growth, yield, and adaptation to various types of abiotic or biotic stresses (drought, nutrient, 
disease, salinity, etc.). Phenotyping has become an impediment in genomics studies of plant 
breeding. In recent years, phenomics, an emerging domain that entails characterizing the full 
set of phenotypes in a given species, has appeared as a novel approach to enhance genomics 
data in breeding programs. Imaging techniques are of substantial importance in phenomics. 
In this study, the importance of current imaging technologies and their applications in plant 
phenotyping are reviewed, and their advantages and limitations in phenomics are highlighted.
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Introduction
The global demand for nutritious food and crops is growing rapidly. In the coming 

decades, it will be a major challenge for farmers and breeders to meet the food demands of 

an increasing world population, which is likely to reach 9 billion by 2050 (Araus and Cairns, 

2014). Satisfying the needs of the world food population will require acceleration in plant 

breeding programs to produce increased potential crop yields (Baker, 2008). Therefore, 

agricultural researchers and plant breeders should focus on the application of genomics and 

novel technological innovations to enhance existing plant breeding programs to develop 
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plants with higher biomass, greater nutrition, and higher resistance to biotic and abiotic stresses. Remarkable 

advancements in genetic tools and techniques have resulted in the development of high-yielding, stress-tolerant 

plants via genetic selection (Badr et al., 2002). However, the lack of accessibility to phenotypic information 

hinders advancement in this field. Farmers and plant breeders have been making selections based on phenotypes 

before the discovery of DNA and molecular markers (Araus and Cairns, 2014). They have learned and observed 

that superior genetic changes may only be identified via a series of crosses among breeds and cultivars under 

different environmental conditions. Recent advances in high-throughput phenotyping have provided more rapid 

and cheap genomic information and have led to the development of large mapping populations and diverse 

panels of thousands of recombinant inbred lines. However, inexpensive genotyping has limited phenotyping in 

gene discovery and the development of molecular markers.

Currently used phenotyping tools and techniques cannot offer adequately rapid and precise measurement of 

traits of a large number of lines; therefore, they have become an impediment to crop breeding and development. 

Existing phenotyping technologies can be considered sluggish, costly, labor-intensive, and mostly destructive 

(Furbank and Tester, 2011). Plant function and performance are directly affected by the nature of the genome 

and the characteristics of the surrounding environment. Growth, development quality, and productivity are all 

functions of light, temperature, climate events, soil characteristics, plant diseases, insects, weeds, and other 

factors. Constraints can be efficiently monitored by employing different imaging tools and techniques (Sankaran 

et al., 2015).

Imaging techniques include thermal infrared imaging for the detection of water stress, chlorophyll fluorescence 

imaging for quantitative analysis of photosynthesis, near-infrared spectroscopy for identifying physiological 

changes in plant organs caused by nutrient deficiencies, visible–near-infrared hyperspectral imaging for shoot 

biomass estimation, and shortwave infrared hyperspectral imaging for water absorbance. The images captured 

by the sensors are analyzed with advanced image processing software tools to acquire pixelwise phenotype data 

of various phenotypic traits of plants (Munns et al., 2010). The objective of the current review is to explore the 

importance of imaging techniques and recent developments in plant phenotyping under controlled conditions and 

to discuss the potential application of imaging techniques in plant phenomics while highlighting their advantages 

and limitations.

Importance of modern plant phenotyping
Plant phenotyping is the comprehensive assessment of complex plant traits such as growth, development, 

tolerance, resistance, architecture, physiology, ecology, yield, and the basic measurement of individual 

quantitative parameters that form the basis for more complex traits (IPPN, 2020). With the rapid advancement 

of sequencing tools and techniques, the whole genome of various plant types is now accessible in databases 

online worldwide. Arabidopsis genome sequencing is a breakthrough in plant genomics (Weigel and Mott, 2009). 

Currently, many essential crop varieties have been sequenced and interpreted (Heffner et al., 2009). However, the 

full interpretation of genetic data for genomic analysis still requires significant effort.
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Traditional phenotyping tools are time-consuming, costly, and destructive in certain phenological stages. The 

purpose of existing phenotyping is to increase the accuracy, precision, and interpretation of phenotypes at whole 

levels of living organism structures while decreasing the expense and labor cost via automation, remote-sensing, 

enhancing data integration, and experimental design. The �omics� approach includes genomics, proteomics, 

transcriptomics, and metabolomics (Chen et al., 2014). �Omics� combined approaches have further potential in 

assisting crop breeding programs, resulting in a new approach (phenomics) in which high-throughput analysis of 

various features of an organism is addressed.

The phenomics notion has changed all practices in crop research and development and is described as the 

characterization of the full set of phenotypes in a given species. In genomics, a sequenced genome is completely 

characterized, whereas, in phenomics, we cannot characterize the whole phenome because of its highly dynamic 

nature and multidimensional properties. However, it is possible to perform high-throughput phenotyping on a 

set of certain traits. Throughput in plant phenotyping refers to the number of individual units at certain structural 

levels in plants. Dimensionality addresses the various phenotypic characteristics of different spatial and temporal 

systems, for instance, the composition of plants, physiology, and performance. Similarly, dimensionality covers 

the number of genotypes, and the diversity of environmental circumstances and treatments are considered at the 

time of phenotyping (Dhondt et al., 2013).

Genotype-phenotype mapping together with the important speed of trait discovery greatly enhances 

phenotypic assessment and prediction (Topp et al., 2013). Quantitative trait loci (QTL) mapping and genome-

wide association studies (GWAS) are helpful means for genetic analysis, providing vital data about genomes 

in different plant studies. They are widely responsible for gene mapping (Badr et al., 2002; Yin et al., 2004). 

The availability of widespread phenome data allows plant relationships to be explored throughout the entire 

population. As a result, phenomics research to a greater extent entirely characterizes potential phenotypes, 

creating the organizational biological and performance-linked attributes under various environmental 

circumstances in a given genotype.

Frequently used imaging tools and techniques in phenomics
Plant phenomics can be employed in crops under controlled conditions in greenhouses and glasshouses as 

well as under field conditions. The environmentally-controlled greenhouses and glass-houses are equipped with 

various automatic control procedures to monitor and record ambient factors (temperature, relative humidity, 

light, and water content) in plants which are ideal for plant phenotyping (Basak et al., 2019). Also, there are 

some essential tools and techniques involved in plant phenomics. Imaging and image processing methods with 

illumination sources from the visible to near-infrared range offer nondestructive plant phenotype image datasets. 

These methods have enhanced the accuracy, increased the throughput, and yielded high-dimensional phenotype 

information for modeling and prediction of plant growth and development (Tardieu and Tuberosa, 2010; 

Golzarian et al., 2011).
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The use of integrated image-based new tools and techniques in phenomics and environmentally controlled 

facilities and platforms have resulted in better performance and offer a novel perspective for enhancing plant 

phenotypes (Granier and Denis, 2014). Plant phenotyping based on imaging techniques is ideal for integrating 

various phenotypic protocols; they allow researchers to create possible genetic characteristics and understand 

the multiple monitoring networks of primary adaptive phenotypic differences on a group of plants with high-

throughput genome sequenced quantitative research (Furbank and Tester, 2011). Plant phenotyping platforms 

based on imaging and high throughput have resulted in widespread tools for plant biology, supporting the plant 

phenomics domain (Paproki et al., 2012). Several different imaging technologies (Table 1), such as visible, 

infrared, fluorescence imaging, and imaging spectroscopy, are currently being exploited to acquire high-

throughput, multidimensional phenotypic information from plant organs to a molecular scale in a few minutes 

(Fiorani and Schurr, 2013; Sozzani et al., 2014). Meanwhile, imaging techniques are the main tools in plant 

phenomics. The ultimate aim is to measure the quantitative phenotype through interactions between plants and 

light sources such as reflected, absorbed, and transmitted photons. The imaging techniques mentioned have all 

been broadly used in the plant sciences domain because of their inexpensive cost and simplicity of operation and 

maintenance.

Table 1. The application and limitations of imaging techniques for plant phenotyping (Adapted from Fiorani and Schurr, 
2013).

Imaging Growing Application Limitations
Visible 
imaging 

Controlled 
environment

Growth dynamics, shoot biomass, yield traits, panicle traits, 
root architecture, imbibition and germination rates, leaf 
morphology, seedling vigor, coleoptile length and biomass 
at anthesis, seed morphology, root architecture

Only provides plant physiological information no spectral 
calibration; Only relative measurement; shadows and 
sunlight can result in under or over exposure and limit 
automatically processing image

Field Imaging canopy cover and canopy color; color information 
can be used for green indices; the use of 3D stereo 
reconstruction from multiple cameras or viewpoints allows 
the estimation of canopy architecture parameters

Difficult to analysis complicated whole-shoot of non-rosette 
species; Pre-acclimation conditions required

Fluorescence 
imaging 

Controlled 
environment & Field

Photosynthetic status, indirect measurement of biotic or 
Abiotic stress 

Difficult to measure at the canopy scale, because of 
the small signal to noise ratio, though laser-induced 
fluorescence transients can extend the range available, while 
solar-induced fluorescence can be used remotely

Thermal 
imaging 

Controlled 
environment

Surface temperature; Stomatal conductance water stress 
induced by biotic or abiotic factors

Imaging sensor calibration and atmospheric correction are 
often required; Sound physics-based results interpretation 
needed

Field Stomatal conductance; Water stress induced by biotic or 
abiotic factors water content composition parameters for

Imaging sensor calibration and atmospheric correction 
are often required; Changes in ambient conditions lead 
to changes in canopy temperature making a comparison 
through time difficult, necessitating the use of reference
Difficult to separate soil temperature from plant temperature 
in sparse canopies, limiting the automation of image 
processing
Sensor calibration required, cost large image data
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Infrared thermal imaging
The infrared thermal imaging technique is commonly used to quantify and analyze plant growth and 

development by screening the internal molecular motions of objects that emit heat radiation (Lee et al., 2019). 

This imaging technique changes heat radiation from an object with an absolute temperature greater than 0 K into 

digital image data that can be employed to compute the surface temperature of that object. Furthermore, infrared 

(IR) thermal imaging has been defined as a suitable technique for monitoring the water status of various crops 

(Vadivambal and Jayas, 2011; Taghvaein et al., 2012), such as olives (Egea et al., 2017), vines (Garcia-Tejero 

et al., 2016), almonds (Garcia-Tejero et al., 2012) and citrus (Garcia-Tejero et al., 2011). This technique works 

according to the leaf energy balance. As soon as water stress circumstance takes place plants act in response with 

a limited stomatal closure, decreasing the stomatal conductance restraining the transpiration by leaf and helping 

in reduction of the evaporative chilling procedure, causing in high leaf temperature (Jones, 2004). The benefit 

of IR imaging technique is that offer spatial resolution and more accurate measurement in varying ambient 

situations (Li et al., 2014) and the downside of IR imaging in the field is that environmental parameter will effect 

on spatial and resolution of obtained images.

Visible light imaging
In agricultural research in plant science, visible-light imaging is extensively used because it is the simplest 

and most inexpensive imaging technique. This imaging technique is typically performed by utilizing traditional 

color cameras with wavelengths ranging from 400 to 750 nm in the electromagnetic spectrum. Imitating human 

vision enables two-dimensional (2D) imaging to analyze different phenotyping traits and to monitor and record 

variations in plant biomass (Tackenberg, 2007). Under controlled conditions, glasshouse, greenhouse, and screen 

house visible imaging techniques are very useful in assessing leaf biomass, crop traits, panicle traits, inhibition 

and growth rates, leaf physiology and structure, seedling strength, coleoptile length, and biomass at the anthesis 

kernel morphology and root structural mechanism (Li et al., 2014).

Fluorescence imaging
Fluorescence imaging techniques are commonly utilized in both experimental laboratories and plant fields. 

This imaging method provides detailed information regarding the plant metabolism circumstances that could 

be acquired through artificial excitation of plant photosystems and reveals the related reactions (Li et al., 2014). 

Fluorescence imaging is based on charge-coupled device (CCD) sensors that are sensitive to fluorescence signals, 

where the signals are generated by illuminating the samples with ultraviolet light.

Usually, the two types of fluorescence are from the red to the far red region and from the blue to the green 

region. These are produced by ultraviolet light covering from 340 to 360 nm and are a fundamental principle of 

multicolor imaging techniques. This method provides concurrent capture of fluorescence radiation and offers a 

rapid method for investigating photosystem II status in vivo. The illumination energy absorbed by green plants 

faces one of the three following consequences: Carbon assimilation, heat dispersion, or fluorescence (Maxwell 

and Johnson, 2000). As a general rule, the fluorescence imaging system consists of a light source for similar 
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illumination of the targeted surface, a fluorescence sensor, and a computer to regulate data collection and 

analysis. Usually, blue light is employed for the excitation of chlorophyll fluorescence.

Monochrome CCD sensors are employed to obtain fluorescence images. Fluorescence imaging techniques 

are mainly used for the early detection of biotic and abiotic stress responses before a decline in growth and 

development could be measured (De Smet et al., 2012). Moreover, the fluorescence imaging technique provides 

a strong diagnostic means to resolve the dissimilarity problem of leaf photosynthetic performance and is used 

in various areas of plant physiology (Siebeck et al., 1997). The majority of fluorescence imaging uses are 

constrained to the shoot level or the particular leaf of prototypical crops. However, developing dynamic software 

and improving common techniques for fluorescence image phenotyping, processing, and data interpretation is 

needed.

Imaging spectroscopy
The application of imaging spectroscopy for plant phenotyping is very promising. It originates from the 

study of remote sensing of vegetation and measures the interaction of solar radiation with plants (Kakaly et al., 

2009). Spectral measurements of the electromagnetic spectra can be acquired by multispectral or hyperspectral 

sensors, which have the potential to scan wavelengths of interest at regular intervals (Fiorani and Schurr, 2013). 

Multispectral and hyperspectral measurements of the absorption waveband in the infrared range are widely used 

to explain different water statuses that assess the canopy water content (Cabera-Bosquet et al., 2012).

Recently, spectral imaging has gain popularity in agriculture field and food industry, for qualitative and 

quantitative analysis of agricultural materials and food products (Ning et al., 2018; Joshi et al., 2019), as well 

as for screening and monitoring the vegetative status of plant crops and pathogen detection nondestructively, 

since, it provides rapid analysis and concurrent spatial and spectral information for a given sample (Seo et al., 

2019). A good example of spectral measurement is the extraction of a number of reflectance vegetation indices 

from simple differences between two wavelength reflectances to normalize the reflectance values. The acquired 

reflected spectra have important information regarding plant structure and vigor conditions that can be used to 

assess growth and development characteristics. Thus the application of this imaging technique has broadened 

its applicability in outdoor fields (Lee et al., 2018). Apart from visible and infrared imaging techniques, 

hyperspectral imaging can divide images into wavelengths, thereby offering specific parts of the electromagnetic 

spectrum of the images (Yang et al., 2013). Integrating imaging spectroscopy with aerial platforms makes it 

suitable for field phenotyping, but the price of the spectral sensor and related structures are reasonably costly.

Tomography and other imaging techniques
During the past decade, magnetic resonance imaging (MRI), positron emission tomography (PET), computed 

tomography scanning (CT), and optical three-dimensional (3D) tomography and imaging technologies have 

advanced and been introduced to enhance proper visualization of plants. MRI scanners utilize powerful magnetic 

fields, electric field gradients, and radio waves to produce images of various organs (Li et al., 2014). PET 

produces 3D images by identifying a pair of gamma rays released by a positron-emitting tracer introduced into 
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the plant. It is utilized to assess photosynthetic functioning and environmental stress and mainly focuses on 

physiological changes (Baker, 2008). Tomographic imaging can accurately monitor and screen the physiological 

performance of plants. Likewise, computing tomography (CT) is another useful imaging technique widely used 

in the medical field to explore the internal structures of the human body. However, in recent years, application 

of CT imaging technique demonstrated its applicability in agriculture field for quality control and inspection of 

numerous agricultural material and food products such as Mango (Barcelon et al., 1999), carrot (Donis-Gonzalez 

et al., 2016) chestnuts, (Donis-Gonzalez et al., 2012). CT uses a precisely collimated beam of X-rays to scan one 

specific area of an object at a time with more sensitive sensors and reconstruct the object in the 3D image (Ray et 

al., 2012). The disadvantage of CT is its high cost and long scanning time.

However, the aforementioned tomographic imaging techniques have low throughput, and their image 

segmentation and reconstruction needs to be further improved for high-throughput plant phenotyping. 

Nevertheless, imaging techniques can display signs and symptoms at the early stages for a broader range of 

stresses, improving effective discrimination between usual stresses by using multiple sensors that monitor 

various physiological processes; for instance, water stress and nitrogen deficiency can decrease chlorophyll 

concentration, but water stress usually has a rapid effect on stomatal closure, given that only water stress results 

in leaf wilting. Water stress will inhibit photosynthesis by the stomatal limitation of CO2 uptake, which will 

impact chlorophyll fluorescence emission. The dynamics of chlorophyll fluorescence emission will probably vary 

between water stress and nitrogen deficiency. Visualizing the dynamics of stomatal variability to interpret the 

dissimilarity of stomatal and perhaps relevant photosynthetic responses requires multi-sensor phenotyping style 

platforms (Chaerle et al., 2009).

Image analysis approaches
In an easy and simplified manner, the image analysis methodology process (Fig. 1) in plant phenotyping 

follows the following steps:

1. Image acquisition is the primary step in image processing and utilizes the bulk of image data in image 

analysis software.

2. Image preprocessing techniques are the subsequent steps that include the use of filters to reduce noise or 

increase sharpness.

3. Image segmentation entails dividing the images into objects of interest, and the objects are exempted from 

the analysis process.

4. Image description involves quantifying object features such as area, height, and width.

Fig. 1. Flowchart of the image acquisition process.
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Advantages of image-based phenotyping
Image-based phenotyping has numerous advantages. These include the following: (a) The methodologies are 

nondestructive. (b) The same crop plant can be imaged in a sequence throughout its life cycle. (c) A whole plant, 

plot, or even an entire field can be included in a single image. (d) Quantification of numerous characteristics can 

be obtained by analyzing a single image. (e) The imaging techniques use near-infrared and infrared spectral data 

to reveal traits that cannot be assessed by the human eye.

Disadvantages and limitations of image-based phenotyping
The limiting factors for widespread adaptation of image-based phenotyping techniques are the high cost of 

the equipment (hyperspectral cameras, drones, and controlled environment chambers), the complexity of data 

analytics software, and the huge amount of data that is generated, which requires superfast computing power 

with huge storage capabilities.

Plant phenotyping platforms
By integrating the advancement in sensing tools, automation techniques, and aeronautics, computing power 

has advanced environmentally-controlled-based phenotyping platforms and field-based platforms in recent years. 

Environmentally controlled phenotyping platforms have been produced or developed in various educational and 

research institutes in growth chambers and houses. These phenotyping platforms are mainly aimed at research 

on small plants such as Arabidopsis (De Vylder et al., 2012) and preliminary crop plants. These platforms 

mainly focus on the deep measurement of plants by integrating robots and image analysis with environmentally 

controlled structures. However, the application of controlled environments to exemplify environmental 

conditions has eminent limitations. Small spaces in greenhouses or growth chambers usually do not allow 

plants to produce flowers and seeds. Consequently, it is impossible to evaluate the impacts of stresses during 

the reproductive process. Moreover, the amount of soil volume used for plants in a controlled environment is 

typically less than that of plants in the field, which will affect growth, development irrigation, and nutrient uptake 

procedures (Akhter et al., 2018). Also, providing responses related to field conditions in a controlled environment 

is not effective. For example, in greenhouses or growth chambers, light, wind speed, and evaporation amounts 

are usually less than they are under open-air conditions.

Mostly, breeders and researchers have concentrated on field-level enhancements in yield productivity or abiotic 

stress resistance or tolerance that supports field-based phenotyping. Field-based phenotyping platforms are 

known as the sole means for delivering the necessary throughput in terms of the number of plants or populations 

and a precise explanation of characteristic expression in the real world (White et al., 2012).

Field-based platforms consist of ground-based and aerial-based methods. Ground-based phenotyping platforms 

include modified vehicles and remote sensing sensors, which have great potential because it allows wider-area 

and real-time data acquirement for sensing plant circumstances and has some useful instruments such as remote 

sensing tools, global positioning system (GPS), and geographic information system (GIS) for exploring spatial 

changeability (Kang et al., 2018), they are known as �phenotowers.� Recently, various types of phenotowers have 
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been developed; for instance, a unique triticale has been developed that can carry eight sets of sensors, two 3D 

flight cameras. an RGB camera, three laser distance sensors, a spectral imaging camera, and two light curtain 

imaging structures. It can collect data on the height of plants, fresh weight density, amount of moisture content, 

growth stage, and tiller density nitrogen content of all plots, having the ability to screen almost 250 plots per 

hour (Busemeyer et al., 2013).

Aerial-based phenotyping platforms are frequently used as a good alternative to overcome the difficulties 

of ground-based phenotyping platforms. Aerial-based phenotyping platforms provide rapid quantification of 

many plants and plots within a matter of seconds. The primary aerial-based phenotyping platforms utilize 

small airplanes to safely obtain the low speeds needed for high-resolution images at low altitudes. The existing 

generation of aerial-based phenotyping platforms varies greatly in terms of payload, price, maintenance, and 

control cost.

Unmanned aerial platforms are alternative blimps that can regularly carry up to 2 kg payloads and have two 

sensors fixed for simultaneous imaging. Unmanned aerial platforms have greater flight control and autonomy and 

are becoming increasingly inexpensive. They can be maneuvered into a suitable position and can acquire high-

resolution images depending on the sensor. The independence and area noticeable by unmanned aerial platforms 

are greater, and most unmanned aerial platforms carry an RGB camera and a thermal sensor.

Multipurpose platforms that collect a huge quantity of image data require high-speed computers and a huge 

amount of data storage for plant phenotyping. Analyzing and managing these data pose another informatics 

challenge, particularly when projects become large in scale, and so many researchers are engaged. Because a 

single image has the potential to produce several phenotypic descriptions, these parameters add more to the 

complexity of subsequent data analysis (Billiau et al., 2012). A research laboratory data management system can 

handle data storage retrieval and accessibility, ensuring rapid data access to all phenomics researchers (Pieruschka 

and Poorter, 2012).

Conclusion
In this review, we evaluated various imaging techniques for plant phenotyping. Structural features, deep 

knowledge dynamic software, and image analysis channels are all very important for image sensors that are 

engaged in assisting in the measurement of phenotypic data. Visible imaging for the assessment of plant shoot 

biomass and growth characteristics in two dimensions has been utilized for crops during breeding. Fluorescence 

imaging was applied to detect foliar infections and thermal imaging was employed for water detection status 

in plants. Imaging spectroscopy requires standardized methodologies for obtaining the spectral attributes to 

decrease the amount of raw data in plant phenotyping. Data collection using MRI and PET, the two common 

phenotyping techniques, is laborious, and more development in software tools is needed to acquire a desirable 

outcome. There is a great difference in the consistency of imaging techniques in environmentally controlled 

growth chambers and fields. This variation inconsistency should be kept in mind to understand data collection 

fundamentals and experimental strategy and proper calibration of imaging-based systems and sensors. 

Furthermore, with the modification of existing imaging tools and techniques and the development of novel 

approaches, a large amount of fresh information will be available to help speed up phenotyping.
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