• 제목/요약/키워드: phenolic composite

검색결과 135건 처리시간 0.026초

탄소섬유 복합여과재의 제조 및 물성연구 (A Study on the Preparation and Characterization of Carbon Fiber Composite Filter)

  • 이재춘;신경숙;이덕용;김병균;심선자;임연수;정윤중
    • 한국세라믹학회지
    • /
    • 제32권9호
    • /
    • pp.989-994
    • /
    • 1995
  • Rigid porous carbon fiber composites with the uniform pore size distribution were prepared by vacuum forming from water slurries containing carbonized PAN fibers, a phenolic resin and ceramic binders. The composites were designed to use for highly efficient carbon fiber filters for particulate filtration and gas adsorption. As the as-received carbon fibers of 1mm in length were milled to an approximate average length of 300${\mu}{\textrm}{m}$, modulus of rupture (MOR) of the composite filter was increased from 1MPa to the value larger than 5 MPa. Modulus of rupture (MOR) for the composite filter fabricated using the milled carbon fiber was increased from 5 MPa to 10 MPa as the carbonization temperature of the PAN fiber was raised from 90$0^{\circ}C$ to 140$0^{\circ}C$. The air permeability and an average pore size of the composite filter were increased from 40 to 270cc/min.$\textrm{cm}^2$ and from 35 to 80${\mu}{\textrm}{m}$, respectively, as the apparent porosity increased from 80 to 95%. It was shown that the MOR of the carbon fiber composite filter was dependent primarily on the average length of carbon fiber, carbonization temperature and the type of bonding materials.

  • PDF

하이브리드화에 의한 탄소 직물 복합재료의 역학적 특성 및 열적 특성 (Mechanical and Thermal Properties of Phenolic Composite reinforced with Hybrid of Carbon Fabrics)

  • 김재홍;박종규;정경호;강태진
    • Composites Research
    • /
    • 제20권4호
    • /
    • pp.18-24
    • /
    • 2007
  • 본 연구에서는 전구체의 종류에 따라 PAN계/rayon계, 직물의 형태에 따라 연속사 및 방적사 탄소 직물을 사용하여 하이브리드 복합재료를 제조하여 역학적 특성과 열적 특성을 살펴보았다. 인장, 층간 전단강도 실험을 통해 연속사 PAN계 탄소 직물을 많이 사용한 하이브리드 복합재료에서 우수한 역학적 특성을 보이는 것으로 확인되었다. 토치 테스트에서는 rayon계 탄소 직물 복합재료의 삭마 저항성이 가장 떨어짐을 확인할 수 있었다. 또한, 방적사 PAN계 탄소 직물과 rayon계 탄소 직물을 하이브리드화한 복합재료가 면내 방향과 수직 방향 모두에서 저 열전도도 구현에 유리한 특성을 보여주었다.

흑연과 지르콘의 상대적인 함량에 따른 마찰특성에 관한 연구 (Influence of the Relative Amount of Graphite and Zirconium Silicate on Friction Characteristics)

  • 김성진;장호
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제31회 춘계학술대회
    • /
    • pp.166-172
    • /
    • 2000
  • Friction characteristics of phenolic resin-based friction composites containing threedifferent relative amounts of graphite and zirconium silicate were investigated by using a pad-on-disk type friction tester. Constant temperature test and constant interval test at three different initial temperatures(100. 200, 300$^{\circ}C$) were performed to examine the effects of friction heat on friction characteristics at elevated temperature. The friction composite(FMO.7) with higher content of ZrSiO$_4$showed unstable friction force at higher temperature and resulted in larger fluctuations of vibration during friction test. The abrasive action of ZrSiO$_4$in friction composite impeded stable transfer film and induced higher friction heat at friction interface. Friction oscillations according to the temperature were associated with the formation of transfer film(i'd body layer) on the friction composite and the counter part.

  • PDF

복합적층재의 온도에 의한 저속충격특성 (Effect of Temperature on Low Velocity Impact Characteristics of Composite Laminates)

  • 한영욱;김후식;김재훈;이영신;조정미;박병준
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.93-96
    • /
    • 2002
  • Instrumented impact tests and compression-after-impact(CAI) tests have been used to evaluate the effect of temperature on the low-velocity impact characteristics of phenolic matrix composites reinforced with various woven glass fabric. Impact characteristics and damage area in laminates are evaluated by C-scan. It is shown that the extent of damage and residual compressive strength of the laminates vary with energy level and impact test temperature. The damage area increases with increasing impact energy and temperature. All these observations indicate reduced impact damage resistance and damage tolerance of the laminates at elevated temperature.

  • PDF

Effects of binder type and heat treatment temperature on physical properties of a carbon composite bipolar plate for PEMFCs

  • Kang, Dong-Su;Roh, Jea-Seung
    • Carbon letters
    • /
    • 제14권2호
    • /
    • pp.110-116
    • /
    • 2013
  • This study investigated a developed process for producing a composite bipolar plate having excellent conductivity by using coal tar pitch and phenol resin as binders. We used a pressing method to prepare a compact of graphite powder mixed with binders. Resistivity of the impregnated compact was observed as heat treatment temperature was increased. It was observed that pore sizes of the GCTP samples increased as the heat treatment temperature increased. There was not a great difference between the flexural strengths of GCTP-IM and CPR-IM as the heat treatment temperature was increased. The resistivity of GPR700-IM, heat treated at $700^{\circ}C$ using phenolic resin as a binder, was $4829{\mu}{\Omega}{\cdot}cm$ which was best value in this study. In addition, it is expected that with the appropriate selection of carbon powder and further optimization of process we can produce a composite bipolar plate which has excellent properties.

3-D Vibration analysis of FG-MWCNTs/Phenolic sandwich sectorial plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.649-662
    • /
    • 2018
  • In this study, based on the three-dimensional theory of elasticity, free vibration characteristics of sandwich sectorial plates with multiwalled carbon nanotube-(MWCNT)-reinforced composite core are considered. Modified Halpin-Tsai equation is used to evaluate the Young's modulus of the MWCNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The exponential shape factor modifies the Halpin-Tsai equation from expressing a straight line to a nonlinear one in the MWCNTs wt% range considered. In this paper, free vibration of thick functionally graded sandwich annular sectorial plates with simply supported radial edges and different circular edge conditions including simply supported-clamped, clamped-clamped, and free-clamped is investigated. A semi-analytical approach composed of two-dimensional differential quadrature method and series solution are adopted to solve the equations of motion. The material properties change continuously through the core thickness of the plate, which can vary according to a power-law, exponentially, or any other formulations in this direction. This study serves as a benchmark for assessing the validity of numerical methods or two-dimensional theories used to analysis of laminated sectorial plates.

비선형 탄성 복합재료 기둥의 임계 좌굴하중 계산 및 안정성 평가 (Stability Evaluation & Determination of Critical Buckling Load for Non-Linear Elastic Composite Column)

  • 주기호;정재호;강태진
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.215-219
    • /
    • 2003
  • Buckling and post-buckling Analysis of Ludwick type and modified Ludwick type elastic materials was carried out. Because the constitutive equation, or stress-strain relationship is different from that of linear elastic one, a new governing equation was derived and solved by $4^{th}$ order Runge-Kutta method. Considered as a special case of combined loading, the buckling under both point and distributed load was selected and researched. The final solution takes distinguished behavior whether the constitutive relation is chosen to be modified or non-modified Ludwick type as well as linear or non-linear. We also derived strain energy function for non-linear elastic constitutive relationship. By doing so, we calculated the criterion function which estimates the stability of the equilibrium solutions and determines critical buckling load for non-linear cases. We applied this theory to the constitutive relationship of fabric, which also is the non-linear equation between the applied moment and curvature. This results has both technical and mathematical significance.

  • PDF

틸팅차량용 복합재 차체소재의 기계적 특성 평가 기술 (Evaluation Techniques of Mechanical Properties for Composite Carbody of Tilting Train)

  • 이은동;윤성호;신광복;정종철
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.51-54
    • /
    • 2004
  • Testing methods for mechanical properties of the advanced composites were introduced. The mechanical properties, such as tensile properties, compressive properties, in-plane shear properties, flexural properties, and interlaminar shear properties, were evaluated along the warp and the fill directions. The CF3327 of the carbon fabric, the HG1581 of the glass fabric, and the HK285 of the aramid fabric were considered as reinforcements. Epoxy and phenolic resin were used as resin. The experimental results obtained in this study would be applicable in the design and structural analysis for the manufacture of the carbody of the tilting train.

  • PDF

열분해 특성상수를 활용한 탄소/페놀릭 복합재료의 온도분포 해석 (The Analysis of the temperature distribution in Carbon/Phenolic composite by thermal decomposition parameters)

  • 김연철;박영채
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.45-49
    • /
    • 2006
  • 탄소/페놀릭 복합재료가 높은 온도에서 열분해 되는 현상을 연구하기 위하여 열중량분석기(TGA)가 이용되었다. 높은 온도와 다양한 하중조건에서 운용되는 고체 추진기관의 열방호 시스템으로 적합한 재료를 분석하고 개발하는데 연구목적이 있다. 실제 연소조건과 유사한 온도 상승속도를 고려하기 위하여 열분해 특성상수 값은 1000 K/min인 경우로 예측된 값을 FEM 해석코드 자료로 활용하였다. 온도 분포는 실험 결과 값과 같은 거동을 보였으며 열분해 깊이는 ${\pm}1mm$ 이내에서 해석 결과와 잘 일치 하였다.

  • PDF

구형 나노 실리카를 사용한 다공성 실리콘/탄소 음극소재의 전기화학적 특성 (Electrochemical Characteristics of Porous Silicon/Carbon Composite Anode Using Spherical Nano Silica)

  • 이호용;이종대
    • Korean Chemical Engineering Research
    • /
    • 제54권4호
    • /
    • pp.459-464
    • /
    • 2016
  • 본 연구에서는 리튬이온 전지용 실리콘 음극소재의 사이클 안정성 및 율속 특성 향상을 위해 다공성 실리콘/탄소 복합소재의 전기화학적 특성을 조사하였다. 나노 실리카 제조는 스토버 방법을 사용하고 교반 속도, 교반 온도 및 $NH_3$/TEOS 비율을 조절 하여 100~500 nm 크기의 구형 실리카를 합성하였다. 구형 나노 실리카의 마그네슘 열환원과 산처리 과정을 통해 다공성 실리콘을 얻고, 제조된 다공성 실리콘에 Phenolic resin을 탄소전구체로 사용하여 최종적으로 다공성 실리콘/탄소 활물질을 합성하였다. 또한 $LiPF_6$ (EC:DMC:EMC=1:1:1 vol%) 전해액에서 다공성 실리콘/탄소 음극소재의 충 방전, 순환전압 전류, 임피던스 테스트 등의 전기화학적 특성을 조사 하였다. 다공성 실리콘/탄소 복합소재의 음극활물질로서 코인 전지의 성능을 조사한 결과 초기용량 및 40사이클 용량 보존율은 각각 2,006 mAh/g, 55.4%를 나타내었다.