DOI QR코드

DOI QR Code

Electrochemical Characteristics of Porous Silicon/Carbon Composite Anode Using Spherical Nano Silica

구형 나노 실리카를 사용한 다공성 실리콘/탄소 음극소재의 전기화학적 특성

  • Lee, Ho Yong (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2016.04.05
  • Accepted : 2016.06.01
  • Published : 2016.08.01

Abstract

In this study, the electrochemical characteristics of porous silicon/carbon composite anode were investigated to improve the cycle stability and rate performance in lithium ion batteries. In this study, the effect of TEOS and $NH_3$ concentration, mixing speed and temperature on particle size of nano silica was investigated using $St{\ddot{o}}ber$ method. Nano porous Si/C composites were prepared by the fabrication processes including the synthesis of nano $SiO_2$, magnesiothermic reduction of nano $SiO_2$ to obtain nano porous Si by HCl etching, and carbonization of phenolic resin. Also the electrochemical performances of nano porous Si/C composites as the anode were performed by constant current charge/discharge test, cyclic voltammetry and impedance tests in the electrolyte of $LiPF_6$ dissolved inorganic solvents (EC:DMC:EMC=1:1:1vol%). It is found that the coin cell using nano porous Si/C composite has the capacity of 2,006 mAh/g and the capacity retention ratio was 55.4% after 40 cycle.

본 연구에서는 리튬이온 전지용 실리콘 음극소재의 사이클 안정성 및 율속 특성 향상을 위해 다공성 실리콘/탄소 복합소재의 전기화학적 특성을 조사하였다. 나노 실리카 제조는 스토버 방법을 사용하고 교반 속도, 교반 온도 및 $NH_3$/TEOS 비율을 조절 하여 100~500 nm 크기의 구형 실리카를 합성하였다. 구형 나노 실리카의 마그네슘 열환원과 산처리 과정을 통해 다공성 실리콘을 얻고, 제조된 다공성 실리콘에 Phenolic resin을 탄소전구체로 사용하여 최종적으로 다공성 실리콘/탄소 활물질을 합성하였다. 또한 $LiPF_6$ (EC:DMC:EMC=1:1:1 vol%) 전해액에서 다공성 실리콘/탄소 음극소재의 충 방전, 순환전압 전류, 임피던스 테스트 등의 전기화학적 특성을 조사 하였다. 다공성 실리콘/탄소 복합소재의 음극활물질로서 코인 전지의 성능을 조사한 결과 초기용량 및 40사이클 용량 보존율은 각각 2,006 mAh/g, 55.4%를 나타내었다.

Keywords

References

  1. Jeon, B. J., Kang, S. W. and Lee, J. K., "Electrochemical Characteristics of Silicon Coated Graphite Prepared by Gas Suspension Spray Method for Anode Material of Lithium Secondary Batteries," Korean J. Chem. Eng., 23(5), 854-859 (2006). https://doi.org/10.1007/BF02705940
  2. Park, J. Y. and Lee, J. D., "Electrochemical Characteristics of Silicon/Carbon Composites with CNT for Anode Material," Korean Chem. Eng. Res., 54(1), 16-21(2016). https://doi.org/10.9713/kcer.2016.54.1.16
  3. Ma, C., Ma, C., Wang, J., Wang, H., Shi, J., Song, Y., Guo, Q. and Liu, L., "Exfoliated Graphite as a Flexible and Conductive Support for Si-based Li-ion Battery Anodes," Carbon, 72, 38-46(2014). https://doi.org/10.1016/j.carbon.2014.01.027
  4. Ko, H. S., Choi, J. E. and Lee, J. D., "Electrochemical Characteristics of Lithium Ion Battery Anode Materials of Graphite/$SiO_2$," Appl. Chem. Eng., 25(6), 592-597(2014). https://doi.org/10.14478/ace.2014.1094
  5. Zheng, Y., Yang, J., Wang, J. and NuLi, Y., "Nano-porous Si/C Composites for Anode Material of Lithium-ion Batteries," Electrochimica Acta 52, 5863-5867(2007). https://doi.org/10.1016/j.electacta.2007.03.013
  6. Lv, P., Zhao, H., Gao, C., Zhang, T. and Liu, X., "Highly Efficient and Scalable Synthesis of $SiO_x$/C Composite with Core-shell Nanostructure as High-performance Anode Material for Lithium ion Batteries," Electrochimica Acta, 152, 345-351(2015). https://doi.org/10.1016/j.electacta.2014.11.149
  7. Zhou, R., Fan, R., Tian, Z., Zhou, Y., Guo, H., Kou, L. and Zhang, D., "Preparation and Characterization of Core Shell Structure Si/C Composite with Multiple Carbon Phases as Anode Materials for Lithium ion Batteries," Journal of Alloys and Compounds, 658, 91-97(2016). https://doi.org/10.1016/j.jallcom.2015.10.217
  8. Yuan, Q., Zhao, F., Zhao, Y., Liang, Z. and Yan, D., "Evaluation and Performance Improvement of Si/SiOx/C Based Composite as Anode Material for Lithium ion Batteries," Electrochimica Acta, 115, 16-21(2014). https://doi.org/10.1016/j.electacta.2013.10.106
  9. Ma, X., Liu, M., Gan, L., Tripathi, P. K., Zhao, Y., Zhu, D., Xu, Z. and Chen, L., "Novel Mesoporous Si@C Microspheres as Anodes for Lithium-ion Batteries," Phys. Chem. Chem. Phys., 16, 4135-4142(2014). https://doi.org/10.1039/c3cp54507e
  10. Stober, W., Fink, A. and Bohn, E., "Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range," Journal of Colloid and Interface Science, 26, 62-69(1968). https://doi.org/10.1016/0021-9797(68)90272-5
  11. Green, D. L., Jayasundara, S., Lam, Y. F. and Harris, M. T., "Chemical Reaction Kinetics Leading to the First Stober Silica Nanoparticles - NMR and SAXS Investigation," Journal of Non-Crystalline Solids, 315, 166-179(2003). https://doi.org/10.1016/S0022-3093(02)01577-6
  12. Sada, E., Kumazawa, H. and Koresawa, E., "Reaction Kinetics and Size Control in the Formation of Monosized Silica Spheres by Controlled Hydrolysis of Tetraethyl Orthosilicate in Ethanol," The Chemical Engineering Journal, 44(3), 133-139(2003). https://doi.org/10.1016/0300-9467(90)80070-S
  13. Hwa, Y., Kim, W. S., Yu, B. C., Kim, J. H., Hong, S. H. and Sohn, H. J., "Facile Synthesis of Si Nanoparticles Using Magnesium Silicide Reduction and Its Carbon Composite as a High-performance Anode for Li ion Batteries," Journal of Power Sources, 252, 144-149(2014). https://doi.org/10.1016/j.jpowsour.2013.11.118
  14. Tao, H. C., Fan, L. Z. and Qu, X., "Facile Synthesis of Ordered Porous Si@C Nanorods as Anode Materials for Li-ion Batteries," Electrochimica Acta, 71 194-200(2012). https://doi.org/10.1016/j.electacta.2012.03.139
  15. Zhang, Y., Jiang, Y., Li, Y., Li, B., Li, Z. and Niu, C., "Preparation of Nanographite Sheets Supported Si Nanoparticles by in Situ Reduction of Fumed $SiO_2$ with Magnesium for Lithium ion Battery," Journal of Power Sources, 281, 425-431(2015). https://doi.org/10.1016/j.jpowsour.2015.02.020
  16. Wu, X., Wang, Z., Chen, L. and Huang, X., "Ag-enhanced SEI Formation on Si Particles for Lithium Batteries," Electrochem. Commun., 5, 935-939(2003). https://doi.org/10.1016/j.elecom.2003.09.001

Cited by

  1. Silicon/Carbon 음극소재 제조 및 바인더와 첨가제에 따른 전기화학적 특성 vol.56, pp.3, 2018, https://doi.org/10.9713/kcer.2018.56.3.303
  2. 석유계 피치를 사용한 실리콘/탄소 음극소재의 전기화학적 특성 vol.56, pp.4, 2016, https://doi.org/10.9713/kcer.2018.56.4.561
  3. 실리카로 코팅된 흑연을 이용한 리튬 이차전지용 흑연/실리콘/피치 복합소재의 전기화학적 특성 vol.58, pp.1, 2016, https://doi.org/10.9713/kcer.2020.58.1.142