• Title/Summary/Keyword: phenolic components

Search Result 371, Processing Time 0.023 seconds

Effect of functional components. antioxidant activity and sensory characteristics of Gastrodiae Rhizoma by different drying condition (천마의 건조 조건에 따른 기능 성분과 항산화활성 및 관능적 특성의 효과)

  • Chu, Han-Na;Kim, Jeong-Sang;Kim, Kyeong-Ok;Jeong, Jong-Kil
    • The Korea Journal of Herbology
    • /
    • v.27 no.6
    • /
    • pp.139-145
    • /
    • 2012
  • Objectives : This study aimed to investigate value differences among Gastrodiae Rhizoma samples(GM, GC, G1, G2 and G3) in various characteristics as well as to provide basic guideline for various processes such as steaming and drying of Gastrodiae Rhizoma. Methods : Gastrodiae Rhizoma were steamed and dried at different temperature and times. They were divided into samples (GM; cultivated, steamed and dried in Muju, GC; cultivated and dried in China, G1; steamed and dried at $55^{\circ}C$ for 60 hours, G2; steamed and dried at $55^{\circ}C$ for 120 hours, G3; steamed and dried at $70^{\circ}C$ for 120 hours) for experiment. They were extracted using water, freeze dried and powdered to analyze gastrodin content, antioxidant activity and sensory evaluation. Results : Proximate composition and the amount of free sugars of Gastrodiae Rhizoma had a little bit differences. Phenolic and flavonoid content of samples were increased by increasing drying temperature and times. Gastrodin content had different values by drying method and G3 was the highest in comparison with others. Increasing drying times led to a increasing in radical and nitrate scavenging activity in samples. Regarding to sensory evaluation, G3 was selected as the best sample according to its highest hedonic score mean (6.11/7) among all samples for appearance, color, flavor, overall acceptability. Conclusions : The results indicated that G3 sample was effective in views of antioxidant activity, gastrodin content and sensory characteristics. Moreover, Gastrodiae Rhizoma cultivated in Korea were investigated with higher antioxidant activity, gastrodin content and sensory characteristics than those cultivated in China.

Manufacturing and Quality Characteristics Analysis of Coffee Powder with Added Hallabong Extract (한라봉 추출액이 첨가된 커피 분말의 제조 및 품질 특성에 관한 연구)

  • Shin, Kyung-Ok;Ha, Seo-Yeong;Shin, Seong-Beom;Kim, Jeong-Yeon;Yang, Ming
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.6
    • /
    • pp.593-603
    • /
    • 2021
  • In this study, Korean Hallabong produced in Jeju Island and coffee were grafted to prepare coffee containing Hallabong extract and the nutritional components were analyzed. As the amount of Hallabong extract increased, the water content and total polyphenol content increased. However, the crude flour, crude protein, and total flavonoid content decreased significantly. The selenium content per 100 g was 91.28 mg in the 1% Hallabong group, and the iron content was 6.84 mg in the 3% Hallabong group. As the content of Hallabong extract in coffee increased, the L-value (brightness) and b-value (yellowness) increased, but the a-value (redness) showed a tendency to decrease. In the case of DPPH(2,2-Diphenyl-1-picrylhydrazyl) radical scavenging activity, the group containing 9% of Hallabong extract showed the highest value at 47.20 μmol/g of TEAC. In particular, the ABTS(2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonate)) and DPPH radical scavenging activity were significantly increased from coffee powder containing 6% or more of Hallabong extract(p<0.05). The caffeine content decreased as the amount of Hallabong extract added to coffee increased. Therefore, when making powder coffee with Hallabong extract added, it is recommended to set the content of Hallabong extract to 6%.

Antioxidant Effects of Hermetia illucens Larvae Extracts Using Different Extraction Temperatures and Solvents (추출 온도 및 용매에 따른 아메리카동애등에(Hermetia illucens) 유충 추출물의 항산화 효과)

  • Ji Yeong Park;Bonwoo Koo;Yong-Soon Kim;Kwanho Park
    • Journal of Environmental Science International
    • /
    • v.32 no.4
    • /
    • pp.221-232
    • /
    • 2023
  • This study investigated the antioxidant effect of Hermetia illucens larvae using different extraction temperatures and solvents. We found significant differences in total phenolic content (TPC), total flavonoid content (TFC), an in three antioxidant indexes 2,2-diphenyl-1-picrylhydrazyl (DPPH), 1,1'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), and ferric-reducing antioxidant power (FRAP) contents, among the samples depending on the extraction temperature and solvent used. The sample extracted with water at 45℃ (HIW-45℃) showed the highest TPC, DPPH, ABTS, and FRAP contents, while the sample extracted with water at 90℃ (HIW-90℃) showed the highest TFC. These differences can be due to the different chemical structures of the extracted components. Based on these results, HIW-45℃ was the optimal extraction method for Hermetia illucens. We intend to further investigate the availability of functional materials for Hermetia illucens using this method.

Newly identified maltol derivatives in Korean Red Ginseng and their biological influence as antioxidant and anti-inflammatory agents

  • Jeong Hun Cho;Myoung Chong Song;Yonghee Lee;Seung-Taek Noh;Dae-Ok Kim;Chan-Su Rha
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.593-603
    • /
    • 2023
  • Background: Korean Red Ginseng is a major source of bioactive substances such as ginsenosides. Efficacy of red ginseng extract (RGE), which contains not only saponins but also various non-saponins, has long been studied. In the water-soluble component-rich fraction of RGE (WS), a byproduct generated in the process of extracting saponins from the RGE, we identified previously unidentified molecules and confirmed their efficacy. Methods: The RGE was prepared and used to produce WS, whose components were isolated sequentially according to their water affinity. The new compounds from WS were fractionized and structurally analyzed using nuclear magnetic resonance spectroscopy. Physiological applicability was evaluated by verifying the antioxidant and anti-inflammatory efficacies of these compounds in vitro. Results: High-performance liquid chromatography confirmed that the obtained WS comprised 11 phenolic acid and flavonoid substances. Among four major compounds from fractions 1-4 (F1-4) of WS, two compounds from F3 and F4 were newly identified in red ginseng. The analysis results show that these compound molecules are member of the maltol-structure-based glucopyranose series, and F1 and F4 are particularly effective for decreasing oxidative stress levels and inhibiting nitric oxide secretion, interleukin (IL)-1β and IL-6, and tumor necrosis factor-α. Conclusion: Our findings suggest that a few newly identified maltol derivatives, such as red ginseng-derived non-saponin in the WS, exhibit antioxidant and anti-inflammatory effects, making them viable candidates for application to pharmaceutical, cosmetic, and functional food materials.

Furfural Production From Xylose by Using Formic Acid and Sulfuric Acid (포름산 및 황산 촉매를 이용한 자일로스로부터 푸르푸랄 생산)

  • Lee Seungmin ;Kim Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.561-569
    • /
    • 2023
  • Furfural is a platform chemical that is produced from xylose, one of the hemicellulose components of lignocellulosic biomass. Furfural can be used as an important feedstock for phenolic compounds or biofuels. In this study, we compared and optimized the conditions for producing furfural from xylose in a batch system using two types of catalysts: sulfuric acid, which is commonly used in the furfural production process, and formic acid, which is an environmentally friendly catalyst. We investigated the effects of xylose initial concentration (10 g/L~100 g/L), reaction temperature (140~200 ℃), sulfuric acid catalyst (1~3 wt%), formic acid catalyst (5~10 wt%), and reaction time on the furfural yield. The optimal conditions according to the type of catalyst were as follows. For sulfuric acid catalyst, 3 wt% of catalyst concentration, 50 g/L of xylose initial concentration, 180 ℃ of temperature, and 10min of reaction time resulted in a maximum furfural yield of 59.0%. For formic acid catalyst, 5 wt% of catalyst concentration, 50 g/L of xylose initial concentration, 180 ℃ of temperature, and 150 min of reaction time resulted in a furfural yield of 65.3%.

A comparative analysis of characteristics and antioxidant capacity of Korean mulberries for efficient seedling cultivation

  • Chan Young Jeong;Heon Woong Kim;Seong Ryul Kim;Hyun-Bok Kim;Kee-Young Kim;Seong-Wan Kim;Jong Woo Park;Ik Seob Cha;Sang Kug Kang;Ji Hae Lee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.47 no.2
    • /
    • pp.147-154
    • /
    • 2023
  • Mulberry exhibits unique characteristics and functionalities across various components, including the roots, branches, leaves, and fruits. However, despite numerous studies on mulberry, research on this plant at the seedling stage is insufficient. Therefore, this study aimed to compare the suitability for seedling cultivation and antioxidant effects of four Korean mulberry cultivars, namely, Daesim, Suhong, Simgang, and Cheongsu. In terms of seed weight, germination rate, and growth rate, Daesim was the most suitable cultivar for seedling production. Polyphenol and flavonoid content analysis showed that all cultivars, except for Cheongsu, showed the highest phenolic content at the 2-week seedling stage. Similarly, antioxidant assays using 2,2'-azino-di-3-ethylbenzthiazoline sulfonic acid (ABTS) and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radicals revealed that the antioxidant effect of all cultivars, except for Cheongsu, increased with cultivation at 2- 4- and 6-week. However, mulberry seedlings had a slower reaction rate against DPPH radical removal than mulberry leaves. In addition, ABTS radical scavenging activity showed a different correlation with polyphenol content. This phenomenon may be due to the different polyphenol compositions between mulberry leaves and seedlings. The results of this study suggest that mulberry seedlings exhibit different bioactivities from mulberry leaves, and component analysis is required in further research.

Anti-inflammatory Effect of Flavonoids Kaempferol and Biochanin A-enriched Extract of Barnyard Millet (Echinochloa crus-galli var. frumentacea) Grains in LPS-stimulated RAW264.7 Cells (마우스 대식 세포주 RAW264.7에 있어서 LPS처리에 의해 유도되는 염증반응에 대한 식용피(Echinochloa crus-galli var. frumentacea)의 저해효과)

  • Lee, Ji Young;Jun, Do Youn;Yoon, Young Ho;Ko, Jee Youn;Woo, Koan Sik;Woo, Mi Hee;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.24 no.11
    • /
    • pp.1157-1167
    • /
    • 2014
  • In order to compare the anti-inflammatory effects of five selected cereal grains-proso millet, hwanggeumchal sorghum, foxtail millet, barnyard millet, and adlay-the inhibitory activities of 80% ethanol (EtOH) extracts obtained from the individual grains on lipopolysaccharide (LPS)-induced nitric oxide (NO) generation were investigated in RAW264.7 cells. The EtOH extract of barnyard millet (Echinochloa crus-galli var. frumentacea) grains exhibited more potent anti-inflammatory activity than that of the other grains. When the EtOH extract of barnyard millet grains was sequentially fractionated with n-hexane, methylene chloride (MC), ethyl acetate (EtOAc), and n-butanol, the majority of the anti-inflammatory activity was detected in the MC fraction, followed by the EtOAc fraction. Pretreatment with the MC fraction caused downregulation of the expression levels of iNOS- and COX-2-specific transcripts and proteins, as well as proinflammatory cytokine gene transcripts (IL-$1{\beta}$, IL-6, and TNF-${\alpha}$) in LPS-stimulated RAW264.7 cells. Additionally, the MC fraction could suppress not only the LPS-induced nuclear translocation of cytosolic NF-kB, but also the LPS-induced activation of MAPKs, such as ERK, JNK, and p38MAPK. Further analysis of the MC fraction by HPLC identified kaempferol, biochanin A, and formononetin as the major phenolic components. Both kaempferol and biochanin A, but not formononetin, could exert anti-inflammatory effect at the same concentrations as those of the MC fraction. Consequently, these results indicate that kaempferol and biochanin A are among the most effective anti-inflammatory phenolic components in barnyard millet grains. This finding suggests that barnyard millet grains and the MC extract enriched in kaempferol and biochanin A could be beneficial functional food sources that have an anti-inflammatory effect.

Optimization of Extraction Conditions to Obtain Functional Components from Buckwheat (Fagopyrum esculentum M.) Sprouts, using Response Surface Methodology (반응표면분석법에 의한 메밀(Fagopyrum esculentum M.) 새싹 기능성분의 추출 조건 최적화)

  • Park, Kee-Jai;Lim, Jeong-Ho;Kim, Bum-Keun;Jeong, Jin-Woong;Kim, Jong-Chan;Lee, Myung-Heon;Cho, Young-Sim;Jung, Hee-Yong
    • Food Science and Preservation
    • /
    • v.16 no.5
    • /
    • pp.734-741
    • /
    • 2009
  • Response surface methodology (RSM) was used to optimize extraction conditions for functional components of buckwheat (Fagopyrum esculentum). A central composite design was applied to investigate the effects of three independent variables, namelyextraction temperature (X1), extraction time (X2), and ethanol concentration (X3), on responses including extraction yield (Y1), total phenolic content in the extract (Y2), $\alpha$-glucosidase inhibition activity (Y3), and acetylcholine esterase (ACE) inhibition activity (Y4). Data were analyzed using an expert design strategy and statistical software. The maximum yield was 24.95% (w/w) at $55.75^{\circ}C$ extraction temperature, 8.75 hextraction time, and 15.65% (v/v) ethanol. The maximum total phenolic yield was 222.45 mg/100 g under the conditions of $28.11^{\circ}C$ extraction temperature, 8.65 h extraction time, and 81.72% (v/v) ethanol. The maximum $\alpha$-glucosidase inhibition activity was 85.38% at $9.62^{\circ}C$, 7.86 h, and 57.58% (v/v) ethanol. The maximum ACE inhibition activity was 86.91% under extraction conditions of $10.12^{\circ}C$, 4.86 h, and 44.44% (v/v) ethanol. Based on superimposition of a four-dimensional RSM with respect to levels of total phenolics, $\alpha$-glucosidase inhibition activity, and ACE inhibition activity, obtained under various extraction conditions, the optimum ranges of conditions were an extraction temperature of $0-70^{\circ}C$, an extraction time of 2-8 h, and an ethanol concentration of 30-80% (v/v).

LC-MS/MS analysis and anti-inflammatory effects of crude extract from Coptidis Rhizoma (황련 추출물의 LC-MS/MS 분석 및 항염증 효과)

  • Min-Jung, Kim;Ye-Jin, Yang;Kwang-Youn, Kim;Hun Hwan, Kim;Jae Dong, Son;Ju-Hye, Yang;Dong bin, Lee;Woo Hyun, Kim;Hu-Jang, Lee;Seon Been, Bak;Kwang-Il, Park
    • Herbal Formula Science
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • Objectives : The main aim of this study was to examine the LC-MS/MS used to identify phenolic compounds of CRE(Coptidis Rhizoma 70% EtOH Extract). Also, we investigated antioxidative activities and Anti-inflammatory activities. Methods : LC-MS/MS Analysis HPLC and LC-MS/MS were performed on a 1260 series HPLC system (Agilent Technologies, Inc., California, USA) and 3200 QTrap tandem mass system (Sciex LLC) operated in positive ion mode (spray voltage set at -4.5 kV). The solvent used was DW and Acetonitrile containing 0.1% formic acid, a gradient system was used at a flow rate of 0.5 mL/min for analysis, and a Prontosil C18 column (length, 250 mm; inner diameter, 4.6 mm; particle size, 5 ㎛; Phenomenex Co., Ltd., California, USA, Biochoff Chromatography) was used. The solvent conditions used in the mobile phases were 0-10 min at 10-15% B, 10-20 min at 20% B, 20-30 min at 25%, 30-40 min at 40%, 40-50 min at 70%, 50-60 min at 95%, and 60-70 min at 95%. The analysis was performed at a wavelength of 284 nm and a temperature of 35℃. The cell viability was measured using a 3-(4,5-dimethyethiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. We examined the effects of CRE on the lipopolysaccharide (LPS)-induced production of nitric oxide (NO) in a RAW 264.7 cells Results : The chemical analysis CRE by Liquid chromatography-tandem mass spectrometry (LC-MS/MS) confirmed that Rosmarinic acid, Ferrulic acid, 3-O-feruloylquinic acid, and 5-O-feruloylquinic acid as phenolic components. DPPH radical scavenging activity was the inhibitory activity of CRE showed at 200 ㎍/mL a statistically significant level. MTT assay demonstrated that the CRE did not have a cytotoxic effect in RAW 264.7 and LPS-induced RAW264.7 cells. Also, CRE reduced NO production in RAW 264.7 cells stimulated with LPS. Conclusions : Based on these findings, The chemical analysis 4 major components CRE such as Rosmarinic acid, Ferrulic acid, 3-O-feruloylquinic acid, and 5-O-feruloylquinic acid. Moreover, we confirmed that CRE has effects antioxidant and anti-inflammatory. The results demonstrate that CRE can be used as an antioxidant and a powerful chemopreventive ingredient against inflammatory diseases.

Changes of biochemical components and physiological activities of coffee beans according to different roasting conditions (커피 볶음 정도에 따른 생화학적 성분 및 생리활성의 변화)

  • Nam, Sanghae;Kang, Suji
    • Food Science and Preservation
    • /
    • v.22 no.2
    • /
    • pp.182-189
    • /
    • 2015
  • Four different kinds of coffee beans (CS, Colombia supremo; EY, Ethiopia yirgacheffee; IM, Indonesia mandheling; and IMM, India monsooned malabar) were roasted at 200 and $250^{\circ}C$ for 10, 15, and 20 min. To determine the optimum roasting conditions, various components of the coffee beans such as pyrazines produced during the roasting, and their antioxidant and antidiabetic effects were analyzed. The different roasting condition did not affect on the concentration of caffeine. However, the amount of 5-caffeoylquinic acid and the total phenolics decreased significantly, at a greater temperature and a longer roasting time. The greatest amount of pyrazines was produced from the IMM however, the amount of pyrazines decreased rapidly at $250^{\circ}C$ according to increasing in roasting time. The DPPH free radical scavenging activity was mostly 80% more effective than that of BHT and ${\alpha}$-tocopherol activities at the same concentration. In the case of the FRAP assay, the reducing power of the coffee slightly decreased at a greater temperature pand longer time. While the inhibitory effect on ${\alpha}$-glucosidase was negligible, the activity decreased by more than 80% when the coffee beans were roasted at $250^{\circ}C$ for 20 min. The inhibitory effect on ${\alpha}$-amylase showed similar results. Taken together, the optimum roasting conditions were determined to be $200^{\circ}C$ and 15 min, which provided the best physiological activity and nutty and chocolatey aromas from the pyrazine of coffee.