• Title/Summary/Keyword: phenol-resorcinol-formaldehyde resin

Search Result 9, Processing Time 0.021 seconds

Synthesis and Bonding Properties of Phenol·Resorcinol·Formaldehyde Resin Adhesives (페놀·레조르시놀 수지의 합성과 접착성능)

  • Roh, Jeang-Kwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.51-58
    • /
    • 1993
  • The phenol resorcinol formaldehyde resin (PRF) adhesives which are curing at ambient temperature for structural purposes were synthesized. A PRF resin is produced according to the two-stage reaction system. In first stage, a low-condensed resol or methylolated phenol were prepared from phenol by reaction with a formaldehyde in alkaline condition. The molar ratio of phenol to formaldehyde was 1.0~1.4. And in second-stage, resorcinol was added to combine with the methylol group of a low-condensed resol(R/P molar ratio 0.3). The glue-joint strength, pot-life and workability of this synthetic PRF resin were superior to conventional ambient temperature setting adhesives such as oilic urethane or water based polymer-isocyanate resin for wood adhesives.

  • PDF

Estimation of Radio Frequency Electric Field Strength for Dielectric Heating of Phenol-Resorcinol-Formaldehyde Resin Used for Manufacturing Glulam (구조용 집성재 제조용 접착제(Phenol-Resorcinol-Formaldehyde Resin) 유전 가열을 위한 고주파 전기장 세기 추산)

  • Yang, Sang-Yun;Han, Yeonjung;Park, Yonggun;Eom, Chang-Deuk;Kim, Se-Jong;Kim, Kwang-Mo;Park, Moon-Jae;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.339-345
    • /
    • 2014
  • For enhancing productivity of glulam, high frequency (HF) curing technique was researched in this study. Heat energy is generated by electromagnetic energy dissipation when HF wave is applied to a dielectric material. Because both lamina and adhesives have dielectric property, internal heat generation would be occurred when HF wave is applied to glulam. Most room temperature setting adhesives such as phenol-resorcinol-formaldehyde (PRF) resin, which is popularly used for manufacturing glulam, can be cured more quickly as temperature of adhesives increases. In this study, dielectric properties of larch wood and PRF adhesives were experimentally evaluated, and the mechanism of HF heating, which induced the fast curing of glue layer in glulam, was theoretically analyzed. Result of our experiments showed relative loss factor of PRF resin, which leads temperature increase, was higher than that of larch wood. Also, it showed density and specific heat of PRF, which are resistance factors of temperature increase, were higher than those of wood. It was expected that the heat generation in PRF resin by HF heating would occur greater than in larch wood, because the ratio of relative loss factor to density and specific heat of PRF resin was greater than that of larch wood. Through theoretical approach with the experimental results, the relative strengths of ISM band HF electric fields to achieve a target heating rate were estimated.

Properties of Glued Laminated Timber Made from Fast-growing Species with Mangium Tannin and Phenol Resorcinol Formaldehyde Adhesives

  • Hendrik, Jessica;Hadi, Yusuf Sudo;Massijaya, Muh Yusram;Santoso, Adi;Pizzi, Antonio
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.253-264
    • /
    • 2019
  • This study characterized the chemical compounds in tannin from mangium (Acacia mangium) bark extract and determined the physical-mechanical properties of glued laminated timber (glulam) made from sengon (Falcataria moluccana), jabon (Anthocephalus cadamba), and mangium wood. The adhesives used to prepare the glulam were based on mangium tannin and phenol resorcinol formaldehyde resin. Five-layer glulam beams measuring $5cm{\times}6cm{\times}120cm$ in thickness, width, and length, respectively, were made with a glue spread of $280g/m^2$ for each glue line, cold pressing at $10.5kgf/cm^2$ for 4 h and clamping for 20 h. Condensed mangium tannin consisted of 49.08% phenolic compounds with an average molecular weight of 4745. The degree of crystallinity was 14.8%. The Stiasny number was 47.22%. The density and the moisture content of the glulams differed from those of the corresponding solid woods with mangium having the lowest moisture content (9.58%) and the highest density ($0.66g/cm^3$). The modulus of rupture for all glulam beams met the JAS 234-2003 standard but the modulus of elasticity and the shear strength values did not. Glulam beams made with tannin had high delamination under dry and wet conditions, but glulam made from sengon and jabon wood met the standard's requirements. All glulam beams had low formaldehyde emissions and were classified as $F^{****}$ for formaldehyde emissions according to the JAS 234 (2003) standard.

Bonding Performance of Adhesives with Lamina in Structural Glulam Manufactured by High Frequency Heating System

  • Kim, Keon-Ho;Kim, Se-Jong;Yang, Sang-Yun;Yeo, Hwanmyeong;Eom, Chang-Deuk;Shim, Kugbo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.682-690
    • /
    • 2015
  • The bonding performance of two types of wood adhesives, namely phenol-resorcinol-formaldehyde (PRF) resin and melamine-urea-formaldehyde (MUF) resin for glued laminated timber manufactured by high frequency (HF) heating was evaluated. The HF heating system consists of HF oscillator with dielectric heating system for curing adhesives, and hydraulic press system for clamping glued laminated timber. The designed frequency and output power of the HF system was as 5 MHz and 60 kW, respectively. To verify dielectric heating mechanism under HF oscillation, the heat loss factors of laminae and adhesives were measured. The results show that it is possible to selectively heat adhesives for their curing due to the remarkably higher loss factor of the adhesives than those of wood laminae. The temperature of adhesive in the bonding line reached up to the set temperature within a few seconds by high frequency oscillating, which advanced the curing of adhesive afterwards. The bonding performance, such as shear strength of bonding line, water soaking delamination, and boiling water soaking delamination of PRF resin met the requirement of Korean Standard (KS), however the MUF resin did not meet the KS requirement of boiling water soaking delamination. These results indicate that the HF heating system is successful to manufacture glued laminated timbers with PRF resins to meet the bonding requirements.

Flexural Modulus of Larch Boards Laminated by Adhesives with Reinforcing Material

  • Injeong LEE;Weontae OH
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.14-22
    • /
    • 2023
  • Economical use of larix (larch) boards (grade 3) in industries is lower than that of imported hardwood; thus, studies have been conducted toward performance improvement of larix boards. Herein, flexural modulus of larix board samples laminated with wood adhesives polyurethane resins, poly (vinyl acetate) resins, phenol-resorcinol-formaldehyde resins, melamine-formaldehyde resins, and urea-formaldehyde resins was compared with that of the samples bonded with adhesives reinforced with mesh-type basalt fibers. Moreover, the flexural moduli of the laminated samples bonded by mesh-type basalt fibers were compared with those of reinforced samples. The results showed that boards laminated with polyurethane and urea-formaldehyde resin adhesives had higher flexural modulus than those without the lamination. In particular, the increase in the flexural modulus was relatively significant for the 2- and 3-ply board structures laminated with polyurethane adhesives compared to those with reinforcement. The 3-ply board structure without reinforcement had the highest flexural modulus when the urea-formaldehyde resin adhesive was used.

Performance of Six-Layered Cross Laminated Timber of Fast-Growing Species Glued with Tannin Resorcinol Formaldehyde

  • Deazy Rachmi TRISATYA;Adi SANTOSO;Abdurrachman ABDURRACHMAN;Dina Alva PRASTIWI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.81-97
    • /
    • 2023
  • The aim of this study were to evaluate tannin resorcinol formaldehyde (TRF) for the preparation of cross-laminated timbers (CLTs) made from fast-growing tree species and to analyze the physical and mechanical properties of CLTs. TRF copolymer resin was prepared by using the bark extracts of Swietenia mahagoni (L.) Jacq. It was observed that the TRF adhesive possessed less solid content (23.59%), high viscosity (11.35 poise), and high pH values (10.0) compared to the standard phenol resorcinol formaldehyde. The TRF adhesive was applied to produce CLTs with the addition of 15% tapioca and flour as an extender. The six-layered CLTs were produced from sengon (Falcataria moluccana Miq.), jabon [Anthocephalus cadamba (Roxb) Miq.], coconut (Cocos nucifera L.), and the combination of coconut-jabon and coconut-sengon wood. The analysis of variance revealed that the layer composition of CLT significantly affected the physical and mechanical properties of the beam. While the modulus of rupture met the standard, the moisture content and modulus of elasticity values did not fulfill JAS 1152-2007. All of the CLTs produced in this study demonstrated low formaldehyde emission, ranging from 0.001 mg/L to 0.003 mg/L, thereby satisfying the JAS 1152 for structural glue laminated timber.

Evaluation of Shear Strength by Direction of Wood Grain for Korean Pine Using PRF Adhesive (페놀레조시놀공축합수지로 접착된 국산 잣나무의 목리방향별 전단성능평가)

  • Park, Sun-Hyang;Kim, Kwang-Mo;Pang, Sung-Jun;Kong, Jin Hyuk;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.243-249
    • /
    • 2017
  • This study was performed to find out the optimum adhesive conditions on manufacturing a cross-laminated timber (hereinafter CLT) with using domestic Korean Pine (Pinus koraiensis). The adhesive conditions including a applied amount of the glue and a Pressure are the one of the most important key factors on establishing CLT production process. The shear strength was examined with differing the adhesive conditions while using Phenol Resorcinol Formaldehyde Resin Adhesive (PRF resin). The optimum adhesive conditions was confirmed to be: glue spread of $250g/m^2$ and Pressure of 0.8 MPa respectively. The grain directions of glued specimens were also considered, perpendicularly bonded and parallelly bonded groups. Shear strength of the former group showed lower values than the latter group which is considered to be the effect of a rolling shear. Meanwhile the shear strength of both group satisfied the Korean Standard (KS F 3021) and the European Standard (EN 14080 and EN 16351). The results derived from this study can be used as the basic data for manufacturing the CLT with domestic Korean Pine. And additional researches for the other species including domestic Korean Larch and Pitch Pine is also now being performed.

Effect of Adhesives and Finger Pitches on Bending Creep Performances of Finger-Jointed Woods

  • Park, Han-Min;Oh, Seong-Won;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.5 s.133
    • /
    • pp.57-65
    • /
    • 2005
  • Following our previous reports for finger-jointed woods with various finger profiles studied for the efficient use of small diameter logs and woods containing various defects, twelve types of finger-jointed woods glued with three kinds of adhesives and with two sizes of finger pitches were made with sitka spruce and red pine. The effects of the adhesives and finger pitches on bending creep performances of finger-jointed woods were investigated. The shape of creep curves differed among the used adhesives and finger pitches of finger-jointed woods for both tested species. Their creep curves showed a linear behavior beyond about one hour, and the N values fitted to power law increased with increasing finger pitches. The initial deformation increased with increasing finger pitches, regardless of the tested species and kinds of adhesives, whereas the effect of finger pitches on the creep deformation was not clear. For finger-jointed woods glued with polyvinyl acetate (PVAc) resin, creep failure occurred in 106 hours after the load was applied. And the difference of the creep compliance between finger-jointed woods glued with resorcinol-phenol formaldehyde (RPF) resin and aqueous vinyl urethane (AVU) resin was small. The ratios for creep performances of finger-jointed woods glued with RPF resin and AVU resin versus solid wood were higher in creep deformation than initial deformation for both species, and the difference between both adhesives was not found. The relative creep decreased with increasing finger pitches, and the marked differences was not found between RPF resin and AVU resin.

Effect of Finger Profile on Static Bending Strength Performance of Finger-Jointed Wood

  • Park, Han-Min;Lee, Gyun-Pil;Kong, Tae-Suk;Ryu, Hyun-Soo;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.57-66
    • /
    • 2004
  • To study the efficient usage of small diameter logs and woods containing defects such as knots, slope of the grain and decay, six types of finger-jointed woods with various finger profiles were made of poplar, pine and oak with different density. We investigated the effect of finger profile on static bending strength performances of finger-jointed woods. The efficiency of bending MOE, MOR and deflection showed the highest value in poplar finger-jointed wood with the lowest density of three species, and the lowest value in oak finger-jointed wood with the highest density of three species. The values markedly decreased with increasing finger pitch for finger-jointed wood glued with polyvinyl acetate (PVAc) resin for all tested species, whereas for the finger-jointed wood glued with resorcinol-phenol formaldehyde (RPF) resin, the influence of finger pitch on the efficiency of MOE was not found in all tested species, and those on the efficiency of MOR and deflection indicated the same trend as finger-jointed wood glued with PVAc resin in the case of pine and oak finger-jointed wood with higher densities. It was found that the values tended to decrease with increasing density of species on the whole and the desirable finger pitches were L (6.8 mm) for poplar, M (4.4 mm) for pine and S (3.5 mm) for oak in a view of economy. For finger-jointed wood glued with PVAc resin, the fitness between a tip and a root width of a pair of fingers δ of 0.5 mm indicated the highest efficiency of MOE for all species. And, the influence of δ on MOR was only found in oak finger-jointed wood glued with RPF resin and the desirable δ value for oak was 0.1 mm. However, it was found that the influence of δ on the strength performance was very small.