• Title/Summary/Keyword: phase-shift keying

Search Result 290, Processing Time 0.022 seconds

SER-Based Relay Selection for Two-Way Relaying with Physical Layer Network Coding

  • Li, Dandan;Xiong, Ke;Qiu, Zhengding;Du, Guanyao
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.336-339
    • /
    • 2013
  • To enhance the symbol error rate (SER) performance of the two-way relay channels with physical layer network coding, this letter proposes a relay selection scheme, in which the relay with the maximal minimum distance between different points in its constellation among all relays is selected to assist two-way transmissions. We give the closed-form expression of minimum distance for binary phase-shift keying and quadrature phase-shift keying. Additionally, we design a low-complexity method for higher-order modulations based on look-up tables. Simulation results show that the proposed scheme improves the SER performance for two-way relay networks.

Initial Timing Acquisition for Binary Phase-Shift Keying Direct Sequence Ultra-wideband Transmission

  • Kang, Kyu-Min;Choi, Sang-Sung
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.495-505
    • /
    • 2008
  • This paper presents a parallel processing searcher structure for the initial synchronization of a direct sequence ultra-wideband (DS-UWB) system, which is suitable for the digital implementation of baseband functionalities with a 1.32 Gsample/s chip rate analog-to-digital converter. An initial timing acquisition algorithm and a data demodulation method are also studied. The proposed searcher effectively acquires initial symbol and frame timing during the preamble transmission period. A hardware efficient receiver structure using 24 parallel digital correlators for binary phase-shift keying DS-UWB transmission is presented. The proposed correlator structure operating at 55 MHz is shared for correlation operations in a searcher, a channel estimator, and the demodulator of a RAKE receiver. We also present a pseudo-random noise sequence generated with a primitive polynomial, $1+x^2+x^5$, for packet detection, automatic gain control, and initial timing acquisition. Simulation results show that the performance of the proposed parallel processing searcher employing the presented pseudo-random noise sequence outperforms that employing a preamble sequence in the IEEE 802.15.3a DS-UWB proposal.

  • PDF

New Evaluation on Correlated MRC Diversity Reception for the Detection of Signals over Wireless Fading Channels

  • Kim, Chang-Hwan;Kim, Hyeong-Kyo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.2
    • /
    • pp.136-140
    • /
    • 2009
  • The performances of M-ary signals using L-branch maximum ratio combining (MRC) diversity reception in correlated Nakagami fading channels are derived theoretically. The coherent reception of M-ary differential phase shift keying (MDPSK), phase shift keying (MPSK), and quadrature amplitude modulation (MQAM) is considered. It is assumed that the fading parameters in each diversity branch are identical. The general formula for evaluating symbol error rate (SER) of M-ary signals in the independent branch diversity system is presented using the integral-form expressions. Until now, results did not extend to the various M-ary case for a coherent reception. The numerical results presented in this paper are expected to provide information for the design of radio system using M-ary modulation method for above mentioned channel environment.

  • PDF

Channel Capacity for NOMA Weak Channel User and Capacity Region for NOMA with Gaussian Mixture Interference

  • Chung, Kyuhyuk
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.302-305
    • /
    • 2019
  • Non-orthogonal multiple access (NOMA) has been considered for the fifth generation (5G) mobile networks to provide high system capacity and low latency. We calculate the channel capacity for the weak channel user in NOMA and the channel capacity region for NOMA. In this paper, Gaussian mixture channel is compared to the additive white Gaussian noise (AWGN) channel. Gaussian mixture channel is modeled when we assume the practical signal modulation for the inter user interference, such as the binary phase shift keying (BPSK) modulation. It is shown that the channel capacity with BPSK inter user interference is better than that with Gaussian inter user interference. We also show that the channel capacity region with BPSK inter user interference is larger than that with Gaussian inter user interference. As a result, NOMA could perform better in the practical environments.

PAPR reduction of OFDM systems using H-SLM method with a multiplierless IFFT/FFT technique

  • Sivadas, Namitha A.
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.379-388
    • /
    • 2022
  • This study proposes a novel low-complexity algorithm for computing inverse fast Fourier transform (IFFT)/fast Fourier transform (FFT) operations in binary phase shift keying-modulated orthogonal frequency division multiplexing (OFDM) communication systems without requiring any twiddle factor multiplications. The peak-to-average power ratio (PAPR) reduction capacity of an efficient PAPR reduction technique, that is, H-SLM method, is evaluated using the proposed IFFT algorithm without any complex multiplications, and the impact of oversampling factor for the accurate calculation of PAPR is analyzed. The power spectral density of an OFDM signal generated using the proposed multiplierless IFFT algorithm is also examined. Moreover, the bit-error-rate performance of the H-SLM technique with the proposed IFFT/FFT algorithm is compared with the classical methods. Simulation results show that the proposed IFFT/FFT algorithm used in the H-SLM method requires no complex multiplications, thereby minimizing power consumption as well as the area of IFFT/FFT processors used in OFDM communication systems.

The Error Rate Performance of APK System in the Presence of Interference and Noise (간섭과 잡음의 존재하에서 APK 시스템의 오율 특성)

  • Chae, Jong-Won;Gong, Byeong-Ok;Jo, Seong-Jun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.3
    • /
    • pp.66-72
    • /
    • 1984
  • In this paper, the error rate performance of L-level amplitude shift keying (ASK), M-ary phase shift keying (PSK) and amplitude phase keying (APK) systems have been studied in the presence of interference and noise. Using the derived error probability equations, the error rate performance of each L-level ASK and M-ary PSK system has been evaluated in terms of carrier-to-noise power ratio (CNR), carrier-to-interferer power ratio (CIR), and envelope distribution of interferer. These results are combined and then the error rate performance of APK signal has been found. Finally, the error rate performance is compared and discussed.

  • PDF

Design and Implementation of Multi-Gigabit Packet Receiver Algorithms based on ECMA Standard (ECMA 표준에 기반한 Multi-Gigabit Packet 수신기 알고리듬 설계 및 구현)

  • Lee, Yong-Wook;Oh, Wang-Rok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.3
    • /
    • pp.26-31
    • /
    • 2009
  • In this paper, we propose the receiver algorithms suitable for the ECMA standard proposed for multi-gigabit packet transmission in 60 GHz band. In the ECMA standard, various modulation schemes are used for system flexibility. Hence, it is crucial to develop receiver algorithms supporting various modulation schemes with an uniform hardware structure. In this paper, we propose the receiver algorithms supporting DBPSK, DQPSK and OOK modulation schemes simultaneously. The proposed algorithms are not only hardware efficient but also support various modulation schemes with an uniform hardware structure.

Blind symbol timing offset estimation for offset-QPSK modulated signals

  • Kumar, Sushant;Majhi, Sudhan
    • ETRI Journal
    • /
    • v.42 no.3
    • /
    • pp.324-332
    • /
    • 2020
  • In this paper, a blind symbol timing offset (STO) estimation method is proposed for offset quadrature phase-shift keying (OQPSK) modulated signals, which also works for other linearly modulated signals (LMS) such as binary-PSK, QPSK, 𝜋/4-QPSK, and minimum-shift keying. There are various methods available for blind STO estimation of LMS; however, none work in the case of OQPSK modulated signals. The popular cyclic correlation method fails to estimate STO for OQPSK signals, as the offset present between the in-phase (I) and quadrature (Q) components causes the cyclic peak to disappear at the symbol rate frequency. In the proposed method, a set of close and approximate offsets is used to compensate the offset between the I and Q components of the received OQPSK signal. The STO in the time domain is represented as a phase in the cyclic frequency domain. The STO is therefore calculated by obtaining the phase of the cyclic peak at the symbol rate frequency. The method is validated through extensive theoretical study, simulation, and testbed implementation. The proposed estimation method exhibits robust performance in the presence of unknown carrier phase offset and frequency offset.

Tight Bounds and Invertible Average Error Probability Expressions over Composite Fading Channels

  • Wang, Qian;Lin, Hai;Kam, Pooi-Yuen
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.182-189
    • /
    • 2016
  • The focus in this paper is on obtaining tight, simple algebraic-form bounds and invertible expressions for the average symbol error probability (ASEP) of M-ary phase shift keying (MPSK) in a class of composite fading channels. We employ the mixture gamma (MG) distribution to approximate the signal-to-noise ratio (SNR) distributions of fading models, which include Nakagami-m, Generalized-K ($K_G$), and Nakagami-lognormal fading as specific examples. Our approach involves using the tight upper and lower bounds that we recently derived on the Gaussian Q-function, which can easily be averaged over the general MG distribution. First, algebraic-form upper bounds are derived on the ASEP of MPSK for M > 2, based on the union upper bound on the symbol error probability (SEP) of MPSK in additive white Gaussian noise (AWGN) given by a single Gaussian Q-function. By comparison with the exact ASEP results obtained by numerical integration, we show that these upper bounds are extremely tight for all SNR values of practical interest. These bounds can be employed as accurate approximations that are invertible for high SNR. For the special case of binary phase shift keying (BPSK) (M = 2), where the exact SEP in the AWGN channel is given as one Gaussian Q-function, upper and lower bounds on the exact ASEP are obtained. The bounds can be made arbitrarily tight by adjusting the parameters in our Gaussian bounds. The average of the upper and lower bounds gives a very accurate approximation of the exact ASEP. Moreover, the arbitrarily accurate approximations for all three of the fading models we consider become invertible for reasonably high SNR.