• Title/Summary/Keyword: phase-shift control

Search Result 276, Processing Time 0.025 seconds

Phase Shift Control for Series Active Voltage Quality Regulators

  • Xiao, Guochun;Teng, Guofei;Chen, Beihai;Zhang, Jixu
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.664-676
    • /
    • 2012
  • A phase shift algorithm based on the closed-loop control of dc-link voltage implemented on a series active voltage quality regulator (AVQR) is proposed in this paper. To avoid pumping-up the dc-link voltage, a general phase shift compensation strategy is applied. The relationships among the operation variables are discussed in detail, which is very important for guiding the design of both the main circuit and the control system. Then on the basis of an investigation of the dc-link voltage pumping-up from viewpoint of the active power flow, a novel phase shift control method based on the closed-loop of the dc-link voltage is proposed. This method can adjust the phase of the output voltage gradually and automatically according to the dc-link voltage variation without introducing a phase jump. The effectiveness of the proposed strategy is verified through simulations of a single-phase 5kVA prototype and laboratory experiments on both a single-phase 5kVA and a three-phase 15kVA prototype.

Minimize Reactive Power Losses of Dual Active Bridge Converters using Unified Dual Phase Shift Control

  • Wen, Huiqing;Su, Bin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.654-664
    • /
    • 2017
  • This paper proposed an unified dual-phase-shift (UDPS) control for dual active bridge (DAB) converters in order to improve efficiency for a wide output power range. Different operating modes of UDPS are characterized with respect to the reactive current distribution. The proposed UDPS has the same output power capability with conventional phase-shift (CPS) method. Furthermore, its implementation is simple since only the change of the leading phase-shift direction is required for different operating power range. The proposed UDPS control can minimize both the inductor rms current and the circulating reactive current for various voltage conversion ratios and load conditions. The optimal phase-shift pairs for two bridges of DAB converter are derived with respect to the comprehensive reactive power loss model, including the reactive components delivered from the load and back to the source. Simulation and experimental results are illustrated and explained with details. The effectiveness of the proposed method is verified in terms of reactive power losses minimization and efficiency improvement.

Current Sharing Method Based on Optimal Phase Shift Control for Interleaved Three-Phase Half Bridge LLC Converter with Floating Y-Connection

  • Shi, Lin;Liu, Bangyin;Duan, Shanxu
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.934-943
    • /
    • 2019
  • A current balance problem exists in multi-phase LLC converters due to the resonant parameter tolerance. This paper presents a current balancing method for interleaved three-phase half bridge LLC converters. This method regulates the phase shift angle of the driving signals between the three phases based on a converter with a floating Y-connection. The floating midpoint voltage has different influences on each phase current and makes the three-phase current balance performance better than midpoint non-floating systems. Phase shift control between modules can further regulate the midpoint voltage. Then three phase current sharing is realized without adding extra components. The current distributions in a midpoint non-floating system and a midpoint floating system are compared. Then the principle and implementation of the proposed control strategy are analyzed in detail. A 3kW prototype is built to verify the validity and feasibility of the proposed method.

An Upshift Improvement in the Quality of Forklift's Automatic Transmission by Learning Control (학습제어를 이용한 지게차 자동변속기 상향 변속품질 개선)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.19 no.2
    • /
    • pp.17-26
    • /
    • 2022
  • Recently, automatic transmissions caused a good improvement in the shift quality of a forklift. An advanced shift control algorithm, which was based on TCU firmware, was applied with embedded control technology and microcontrollers. In the clutch-to-clutch shifting, one friction element is released and the other friction element is activated. During this process, if the release and application timings are not synchronized, an overrun or tie-up occurs and ultimately leads to a shift shock. The TCU, which measures only the speed of the forklift, inevitably applies the open-loop shift control. In this situation, the speed ratio does not change during the clutch fill. The torque phase occurs until the clutch is disengaged. In this study, an offline shift logic of the learning control was proposed. It induced a synchronous shift when the learning control progressed. During this process, the reference current trajectory of the release clutch was corrected and applied to the next upshift. We considered the results of the overrun/tie-up characteristics of the upshift performed immediately before. The vehicle test proved that the deviation in shift quality, which was caused by the difference in the mechanical characteristics of the clutch, could be improved by the learning control.

Digital-To-Phase-Shift PWM Circuit for High Power ZVS Full Bridge DC/DC Converter (대용랑 ZVS Full Bridge DC/DC 컨버터에 있어서 Digital-To-Phase Shift PWM 발생회로)

  • Kim, Eun-Su;Kim, Tae-Jin;Byeon, Yeong-Bok;Park, Sun-Gu;Kim, Yun-Ho;Lee, Jae-Hak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.1
    • /
    • pp.54-61
    • /
    • 2000
  • Conventionally, ZVS FB DC/DC converter was controlled by monolithic IC UC3879, which includes the functions of oscillator, error amplifier and phase-shift circuit. Also, microprocessor and DSP have been widely used for the remote control and for the immediate waveform control in ZVS FB DC/DC converter. However the conventional microprocessor controller is complex and difficult to control because the controller consists of analog and digital parts. In the case of the control of FB DC/DC converter, the output is required of driving a direct signal to the switch drive circuits by the digital controller. So, this paper presents the method and realization of designing the digital-to-phase shift PWM circuit controlled by DSP (TMX320C32) in a 2,500A, 40㎾ ZVS FB DC/DC converter.

  • PDF

Implementation of Phase Shift Full-Bridge PWM Converter Using DSP (DSP를 이용한 위상 천이 풀-브릿지 컨버터의 디지털 제어기 구현)

  • Lim Soo-Hyun;Lim Jeong-Gyu;Chung Se-Kyo;Lee Hyun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.137-139
    • /
    • 2006
  • This paper present an implementation of digital control system for a phase-shift full-bridge converter using a digital signal processor. The digital control of phase-shift full-bridge converter provides many advantageous of easily generating various phase-shift timing and implementing a complex voltage and current control algorithm. The digital controller is implemented using the DSP TMS320F2812 and the converter and controller operation is proved through the experimental results.

  • PDF

Software PLL Based Speed Control of High Speed Miniature BLDC (소프트웨어 PLL 기반 소형 고속 BLDC의 속도 제어)

  • Park, Tae-Hub;Seok, Seung-Hun;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.132-135
    • /
    • 2008
  • This paper presents a PLL(Phase Lock Loop) control method for speed control of high speed miniature BLDCM(Brushless DC Motor) using hall sensor. The Proposed PLL based speed control method uses a only phase shift between reference pulse signal according to speed reference and actual pulse signal from hall sensor. It doesn't use any speed calculation, and calculates a direct current reference from phase shift. The current reference is changed to reduce the phase shift between reference and actual pulse. So the actual speed can keep the reference speed. The proposed control scheme is very simple but effective speed control is possible.

  • PDF

Measured Intensity Control Method of a Phase-shift Measurement Based Laser Scanner by using APD Bias Voltage Characteristic (위상 검출 방식 레이저 스캐너의 APD bias 전압 특성을 이용한 검출신호세기 제어 방법)

  • Jang, Jun-Hwan;Yoon, Hee-Sun;Hwang, Sung-Ui;Park, Kyi-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1096-1100
    • /
    • 2012
  • In the phase-shift measurement method, the distance light travels can be obtained based on the phase difference between the reference signal and the measured signal. When the object having various colors is measured, the intensity of the measured signal much varies even at the same distance, and it causes different phase delay due to wide dynamic range input to a signal processing circuit. In this work, an measured intensity control method is proposed to solve this phase delay problem.

Development of Clutch Auto Calibration Algorithm for Automatic Transmission Shift Quality Improvement (자동변속기 변속품질 향상을 위한 클러치 자동보정 알고리즘 개발)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.17 no.3
    • /
    • pp.47-56
    • /
    • 2020
  • As a shift control of automatic transmission was managed with the electronic control unit (ECU), shift quality which is a measure of shift shock during gear change has markedly improved. However, the initial clutch pressure control of the clutch filling phase should continue to rely on the predetermined control input since the input and output speeds are unchanged until the shifting process attains the inertia phase. It is critical to minimize the clutch response time and control the clutch pressure accurately at the end of clutch fill to achieve quick shift response and smoothness. Advanced transmission companies have adopted an auto calibration method which establishes the databases for the clutch piston fill-up attributes and the frictional characteristics of the disks. In this study, a distinctive auto calibration algorithm for forklift transmission under development is proposed and verified with the real-vehicle test. The experimental calibration results showed consistent turbine dynamics at the initial stage of shifts with the properly calibrated clutch-fill control parameters. By using this technique, it is necessary to finalize the shift control for the various operation conditions.

Design and Control of the Phase Shift Full Bridge Converter for the On-board Battery Charger of Electric Forklifts

  • Kim, Tae-Hoon;Lee, Seung-Jun;Choi, Woo-Jin
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.113-119
    • /
    • 2012
  • This paper describes the design and control of a phase shift full bridge converter with a current doubler, which can be used for the on-board charger for the lead-acid battery of electric forklifts. Unlike the common resistance load, the battery has a large capacitance element and it absorbs the entire converter output ripple current, thereby shortening the battery life and degrading the system efficiency. In this paper a phase shift full bridge converter with a current doubler has been adopted to decrease the output ripple current and the transformer rating of the charger. The charge controller is designed by using the small signal model of the converter, taking into consideration the internal impedance of the battery. The stability and performance of the battery charger is then verified by constant current (CC) and constant voltage (CV) charge experiments using a lead-acid battery bank for an electric forklift.