• Title/Summary/Keyword: phase-leading angle

Search Result 24, Processing Time 0.025 seconds

A Study on the Development of BLDC Motor with High Power Density (고출력 브러시레스 직류전동기 개발에 관한 연구)

  • Kim, Hyeon-Cheol;Gong, Yeong-Gyeong;Choe, Tae-In;Song, Jong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.297-304
    • /
    • 2000
  • The motor for torpedo propulsion is needed the compact and short rating high power characteristics. This paper describes the development of the motor through the theory and Finite Element Method(FEM) analysis for Brushless Direct Current Motor(BLDCM) of 7 phase 6 poles. Back EMF, inductance and eddy current loss were analyzed. The proposed methods like magnetic wedge acquired by these FEM analysis were introduced. Phase-leading angle using encoder was used. Test results on the motor of 7 phase 6 poles were showed the validity of proposed methods and phase-leading angle.

  • PDF

A Study On the Phase Advance Angle of High Speed Operation for 7 Phase BLOC Motor Drives (7상 BLDC 전동기의 고속 운전시 개선된 진상각 보상 연구)

  • Kim, Hyun-Cheol;Oh, Hyung-Sik;Kim, Jang-Mok;Kim, Cheul-U
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1930-1936
    • /
    • 2007
  • According to previously published paper the phase advance angle is adopted to the BLDC motor drive with high speed. The report proposed describes the optimum algorism that phase current is in phase with the initial flat region of back EMF. This report studies the need of more leading phase advance angle compared with in phase concept between phase current and back EMF. In case of high reactance this report proposes the more phase advance angle than in phase. The test results more rms value of phase current and output power due to more phase advance angle than in phase. It will be helped the high power operation of BLDC motor at high speed.

Study of high speed and high torque performance of brushless DC motor drive for maximum power (고속 고출력 영구자석 전동기 최대 출력 운전에 관한 연구)

  • Bin J.G.;Kim C.U.
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.122-124
    • /
    • 2006
  • ADD is under development for the high speed motor. This paper describes simulation and test results for obtaining the maximum output by leading angle of encoder. So we carried out the test for obtaining the optimum leading angle of encoder. Test results on the motor of 7 phases 6 poles were showed the validity of proposed methods and phase-leading angle.

  • PDF

Control Bandwidth Extension Method Based on Phase Margin Compensation for Inverters with Low Carrier Ratio

  • Wei, Qikang;Liu, Bangyin;Duan, Shanxu
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1760-1770
    • /
    • 2018
  • This paper presents a control bandwidth extension method for inverters with a low carrier ratio. The bandwidth is extended at the price of decreasing the phase margin. Then the phase margin is compensated by introducing an extra leading angle into an inverse Park transformation. The model of the controller with the proposed method is established. The magnitude and phase characteristics are also analyzed. Then the influence on system stability when the leading angle is introduced is analyzed. The proposed method is applied to design an inverter controller with both a large bandwidth and a desired phase margin, and the experimental results verify that the controller performs well in the steady-state and in terms of transient response.

High Speed Control of a Switched Reluctance Motor Using a Leading Angle Manipulation (스위칭각 조정방식에 의한 SRM의 고속 제어기 설계)

  • Yeo, Hyeong-Gee;Lee, Sang-Lak;Yoo, Ji-Yoon;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.3-5
    • /
    • 1994
  • The SRM can be operated on the high speed range in which the back-emf is greater than the DC link voltage. However, the phase current of the SRM should be controlled through the selection of an exciting angle since it can not be controlled by a chop of the DC link voltage in the high speed range. In this paper, a PI and a bang-bang controller are employed in order to control the speed of the SRM and the leading angle of the SRM is adapted as a control input. The performances of two controllers are evaluated by computer simulation. The results show that the bang-bang controller is more attractive than the PI controller in the cost and performance aspects.

  • PDF

CONTROL OF LASER WELD KEYHOLE DYNAMICS BY POWER MODULATION

  • Cho, Min-Hyun;Dave Farson
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.600-605
    • /
    • 2002
  • The keyhole formed by high energy density laser-material interaction periodically collapses due to surface tension of the molten metal in partial penetration welds. The collapse sometimes traps a void at the bottom of the keyhole, and it remains as welding defects. This phenomenon is seen as one cause of the instability of the keyhole during laser beam welding. Thus, it seems likely that improving the stability of the keyhole can reduce voids and uniform the penetration depth. The goal of this work is to develop techniques for controlling laser weld keyhole dynamics to reduce weld defects such as voids and inconsistent penetration. Statistical analysis of the penetration depth signals in glycerin determined that keyhole dynamics are chaotic. The chaotic nature of keyhole fluctuations and the ability of laser power modulation to control them have been demonstrated by high-speed video images of laser welds in glycerin. Additionally, an incident leading beam angle is applied to enhance the stability of the keyhole. The quasi-sinusoidal laser beam power of 400Hz frequency and 15$^{\circ}$ incident leading beam angle were determined to be the optimum parameters for the reduction of voids. Finally, chaos analyses of uncontrolled signals and controlled signals were done to show the effectiveness of modulation on the keyhole dynamics. Three-dimensional phase plots for uncontrolled system and controlled system are produced to demonstrate that the chaotic keyhole dynamics is converted to regular periodic behavior by control methods: power modulation and incident leading beam angle.

  • PDF

Automatic frequency Control Current-Source Inverter for Forging Application

  • Chudjuarjeen, Saichol;Koompai, Chayant;Monyakul, Veerapol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.238-242
    • /
    • 2004
  • The paper describes an automatic frequency control current-fed inverter for forging applications. The IGBT in series with diodes as its switching devices in the inverter circuit which is of full-bridge type. The operating frequency is automatically tracked to maintain a small constant leading phase angle when load parameters change. The load voltage is controlled to protect the switches. The output power can be adjusted by varying the input current from phase controlled rectifiers which is a part of current source. The system has been operated at 15-17 kHz. The output power transferred to the load is 1,595 watts. It can heat the steel work pieces with 15 mm diameter and 120 mm long from room temperature to approximately 1100 $^{\circ}C$ within 20 seconds with 0.97 leading power factor on the input side.

  • PDF

SEPARATION CONTROL MECHANISM USING SYNTHETIC JET ON AIRFOIL (익형에서의 synthetic jet을 이용한 박리제어 mechanism)

  • Kim, S.H.;Kim, W.;Hong, W.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.60-66
    • /
    • 2007
  • Separation control has been performed using synthetic jets on airfoil at high angle of attack. Computed results demonstrated that stall characteristics and control surface performance could be substantially improved by resizing separation vortices. It was observed that the actual flow control mechanism and flow structure is fundamentally different depending on the range of synthetic jet frequency. For low frequency range, small vortices due to synthetic jet penetrated to the large leading edge separation vortex, and as a result, the size of the leading edge vortex was remarkably reduced. For high frequency range, however, small vortex did not grow up enough to penetrate into the leading edge separation vortex. Instead, synthetic jet firmly attached the local flow and influenced the circulation of the virtual airfoil shape which is the combined shape of the main airfoil with the separation vortex. Theses results show the characteristic of unsteady flow of single synthetic jet. Beside, we researched on multi-array synthetic jet to obtain applicable synthetic jet velocity. Multi-location synthetic jet is proposed to eliminate small vortex on suction surface of airfoil. With the results, we concluded that the flow around airfoil is stable by high frequency synthetic jet with elimination of small vortex and confirmation of stable flow. Moreover, performance of multi-array/multi-location synthetic jet can be improved by changing phase angle of multi-location synthetic jet.

  • PDF

The mechanism of thrust generation by dynamic stall in flapping flight

  • Lee Jung Sang;Kim Chongam;Rho Oh-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.291-293
    • /
    • 2003
  • This paper deals with a thrust generation of flapping-airfoil by dynamic stall. From many other previous research results, phase angle $ between pitching and plunging mode of flapping motion must be 90 deg. to satisfy maximum propulsive efficiency. In this case, leading edge vortex is relatively small. This phenomenon is related dynamic stall. So preventing leading edge vortex induced by dynamic stall guarantees maximum propulsive efficiency. But, in this paper we insist the leading edge vortex yields quite a positive influence on thrust generation and propulsive efficiency. In order to certify our opinion, pitching and plunging motions were calculated with the parameter of amplitude and frequency by using the unsteady, incompressible Navier-Stokes flow solver with a two-equation turbulence model. For more efficient computation, it is parallelized by MPI programming method.

  • PDF

Kinematic analysis of skill between flexed and extended type of knee during Jigeo-Cha-Gi in Taekwon-Do (태권도 찍어차기의 무릎편 유형과 구부린 유형의 운동학적 비교분석)

  • Kim, Dong-Kyu;Ryew, Che-Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.25-42
    • /
    • 2005
  • The study was to investigate kinematic difference between flexed and extended type of knee during Jigeo-Cha-Gi in Taekwon-Do. For this subjects participated were consisted of weights of fin (1), bantam (1) and welter class(1) of male 3 national representative level skilled in two type(flexed and extended type) of Jigeo-Cha-Gi. 3D cinematography analysis was performed for motion analysis and Kwon 3D ver. 3.1) was used for 3D coordinates & analysis variables calculation. In Temporal variable there was no significant difference statistically in all phases & total elapsed time between flexed and extended type, but flexed type was delayed more 0.016 sec than extended type. In displacement of COG there was significant difference in level of p<.05 showing longer mean 6.13 cm in case of flexed type than extended type in displacement of COG during all phase and too significant difference in level of p<.01 showing longer mean 4.4 cm in case of flexed type than extended type in displacement of COG in follow through phase. In velocity of COG there was significant difference in level of p<.001 showing higher mean 15.53cm/s in case of flexed type than extended type in velocity of COG(Y direction) during targeting phase and peak velocity(Y) was more fast 8.74 cm/s in extended type than flexed type. In velocity of leading leg in forward direction(Y) there was significant difference in level of p<.05 showing higher thigh mean value in case of flexed type than extended type but showing higher foot mean value in extended type at level of p<.001 than flexed type in velocity of COG(Y direction). In velocity of leading leg in vertical direction(Z) there was no significant difference in the second & third phase in case of vertical velocity level, but momentum transferred efficiently form proximal to distal endpoint. In front-back & right-left orientation angle of trunk there was possibility of more stable Jigeo-Cha-Gi in extended than flexed type by decreasing in right-left orientation angle of trunk. In relative angle of lower leg(hip, knee, ankle) there was significant difference in level of p<.001 showing longer mean 32.74 deg. in case of flexed type than extended type in hip joint during the second phase but maintained insufficient extended knee of mean 168 deg. in targeting phase.