• Title/Summary/Keyword: phase separation ratio

Search Result 215, Processing Time 0.022 seconds

Morphology of Silk Fibroin/Poly(vinyl alcohol) Blend Film (견피브로인/Poly(vinyl alcohol) 브렌드 필름의 형태학적 구조)

  • 엄인철;박영환
    • Journal of Sericultural and Entomological Science
    • /
    • v.40 no.2
    • /
    • pp.169-175
    • /
    • 1998
  • The morphology of silk fibroin/poly(vinyl alcohol)(PVA)blend films was investigated using optical microscopy and confocal laser scanning microscopy. The effects of blend ratio and molecular weight of silk fibroin and PVA on phase separation were studied. Macro-phase separation occurred for the silk fibroin-rich/poor region whereas micro-phase separation took place for the dispersed/continuous phase, In spite of differences in molecular weight and blend ratio, it is observed that the dispersed phase and continuous one are composed of silk fibroin and PVA component, respectively. As the molecular weight of silk fibroin and silk fibroin content in blend ratio are decreased, the compatibility of blend is increased due to the reduction of micro-phase separation.

  • PDF

Phase-Separation Properties of Poly(Ethylene Glycol) had Dextran Solutions In Microfluidic Device (미세 유체장치 내에서 Poly(Ethylene Glycol)과 Dextran 용액의 상 형성 특성 연구)

  • Choi, Joo-Hyung;Chang, Woo-Jin;Lee, Sang-Woo
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.244-249
    • /
    • 2007
  • Fluidic conditions for the separation of phases were surveyed in a microfluidic aqueous two-phase extraction system. The infusion ratio between polyethylene glycol (PEG) and dextran solution defines the concentrations of each polymer in micro-channel, which determine the phase-separation. The appropriate ratio between PEG (M.W. 8000, 10%, w/v) and dextran T500 (M.W. 500000, 5%, w/v) in order to perform the separation of phases of both polymers was observed as changing the mixed ratio of both polymers. Based on the fluidic conditions, stable two-phase solutions were obtained within 4% to 8% and 3% to 1% of PEG and dextran, respectively. In addition, the characteristics of the two-phase were discussed. The separation technique studied in the paper can be applied for the implementation of a lab-on-a chip which can detect various biological entities such cells, bacterium, and virus in an integrated manner using built in a biosensor inside the chip.

Regeneration of solid phase filter by chemical cleaning

  • Byung-Dae Lee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.19-26
    • /
    • 2024
  • Recently, separation membranes have been applied to fields such as water supply, sewage treatment, gray water reuse, and air pollution control. Chemical cleaning technology is attracting attention among the methods of reusing these expensive separation membranes. It was found that the separation membrane could be regenerated using chemical cleaning. Specifically, it was found that the use time of the separation membranes regenerated by chemical cleaning was sustainable for more than 1,700 hours. Additionally, it was found that the flux recovery ratio after chemical cleaning was maintained at least 60%. In addition, the flux recovery ratio of HYDREX 4710, an organic membrane cleaner, and 4703, an inorganic membrane cleaner, was 76% and 62%, respectively, showing the highest flux recovery ratio among the chemicals used. Considering that the target raw water of this study is biological secondary treatment water, it was suggested that chemical cleaning could be actively used to regenerate separation membranes in future water treatment.

Separation of a Sugar Mixture by Emulsion Liquid Membranes (에멀젼형 액막법에 의한 당 혼합물의 분리)

  • Lee, Sang Cheol
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.380-386
    • /
    • 2005
  • Separation of fructose and glucose was performed using emulsion liquid membranes with a mixture of an organoboronic acid and a quaternary ammonium salt as a carrier in a batch reactor. In order to find a carrier and an optimal experimental condition suitable to the sugar separation, extraction of each sugar was carried out independently. The effect of various experimental variables, such as initial concentration of sugar in the feed phase, type of organoboronic acids, and w/o ratio, on the sugar separation was investigated, and the concentrations of sugars in each aqueous phase were analyzed. The ratio of degree of extraction of fructose to that of glucose was very high, but the concentration of fructose in the receiving phase was not too high. Therefore, a stronger stripping agent in the receiving phase was required for development of a practical ELM system suitable to the sugar separation.

Study on Initial Scattering State as a Function of Curing Temperature for Polymer Dispersed Liquid Crystal Cells with Different Mixing Ratio (고분자 분산형 액정 셀에서 혼합물의 비율에 따라 노광 온도가 초기 산란도에 미치는 영향)

  • 김미숙;서영현;이명훈;이종문;이택수;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.59-64
    • /
    • 2004
  • We have fabricated the polymer dispersed liquid crystal (PDLC) cell where a control of phase separation is very important. The factors to influence the phase separation are mixing ratio of LC and polymer, curing temperature and UV intensity. In this paper, we inspected the change of a phase separation as a function of curing temperature for the mixture of E7 and. NOA65 with different ratios. When the LC concentration is less than polymer such as LC:NOA65 = 40:60wt%, the PDLC cell is influenced strongly by the curing temperature. However, when the LC concentration is much less than polymer such as LC:NOA65 = 80:20wt%, it is influenced slightly by the curing temperature. The reason is because the mixture shows upper critical solution temperature behavior and therefore it is important to know the behavior of phase separation as a function of curing temperature of the mixture.

Two-Phase Flow Distribution and Phase Separation Through Both Horizontal and Vertical Branches

  • Tae, Sang-Jin;Keumnam Cho
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1211-1218
    • /
    • 2003
  • The present study investigated two-phase flow distribution and phase separation of R-22 refrigerant through various types of branch tubes. The key experimental parameters were the orientation of inlet and branch tubes (horizontal and vertical), diameter ratio of branch tube to inlet tube (1 and 0.61), mass flux (200-500 kg/㎡s), and inlet quality (0.1-0.4). The predicted local pressure profile in the tube with junction was compared and generally agreed with the measured data. The local pressure profile within the pressure recovery region after the junction has to be carefully investigated for modeling the pressure drop through the branch. The equal flow distribution case can be found by adjusting the orientation of the inlet and branch tubes and the diameter ratio of the branch tube to the inlet tube. The T-junction with horizontal inlet and branch tubes showed the nearly equal phase distribution ratio. The quality at the branch tube varied from 0 to 1 as the orientation of the branch tube changed, while it varied within${\pm}$50% as the orientation of the inlet tube changed.

Structural Changes of PVDF Membranes by Phase Separation Control (상분리 조절에 의한 PVDF막의 구조 변화)

  • Lee, Semin;Kim, Sung Soo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.57-63
    • /
    • 2016
  • Thermally induced phase separation (TIPS) and nonsolvent induced phase separation (NIPS) were simultaneously induced for the preparation of flat PVDF membranes. N-methyl-2-pyrrolidone (NMP) was used as a solvent and dibutyl-phthlate (DBP) was used as a diluent for PVDF. When PVDF was melt blended with NMP and DBP, crystallization temperature was lowered for TIPS and unstable region was expanded for NIPS. Ratio of solvent to diluent changed the phase separation mechanism to obtain the various membrane structures. Contact mode of dope solution with nonsolvent determined the dominant phase separation behavior. Since heat transfer rate was greater than mass transfer rate, surface structure was formed by NIPS and inner structure was by TIPS. Quenching temperature of dope solution also affected the phase separation mechanism and phase separation rate to result in the variation of structure.

An Estimation on the Stability of W/O Type Emulsified Fuel Using by Capacitance Sensor (정전용량센서를 이용한 W/O형 유화연료의 안정성 평가)

  • Cho, Seong-Cheol;Oh, Yang-Hwan;Im, Seok-Yeon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.95-101
    • /
    • 2011
  • We estimated on the stability of W/O type emulsified fuel using by capacitance sensor, so it concluded the following conclusions. For the first 24 hours, prepared emulsified fuel reveals phase separation ratio of 5%, maintains stable status which verifies the stability of emulsified fuel. Adding more water increases the phase separation ratio rapidly, and adding more surfactant displays stable emulsification. Adding water causes larger size of water droplet diameter, and adding surfactant mixture causes smaller size of water droplet diameter. In conclusion, the size of W/O type emulsified fuel water droplet diameter is directly related to the volume of surfactant, and density of water droplet diameter changes thedistribution according to water contents.

A Study on the Separation and Recovery of Magnesium from Waste Bittern (폐해수로부터 마그네슘의 분리.회수에 관한 연구)

  • Ju, Chang-Sik;Lee, Gyeong-Ok;Jeong, Seong-Uk;Park, Heung-Jae;Na, Seok-Eun;Jeong, Gap-Seon
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.381-386
    • /
    • 2001
  • The characteristics of precipitation separation and solvent extraction separation of magnesium from the waste bittern were studied experimentally In the result of precipitation separation, the size of magnesium hydroxide precipitated was not affected on pH, but decreased with increasing the precipitation temperature. The purity of magnesium oxide precipitated was increased with pH beyond pH 11. From the solvent extraction separation, the equilibrium extraction ratio of magnesium was increased with pH and temperature of extraction phase, the concentration of stripping phase, and with decreasing pH of stripping phase. The extractant of Aliquat 336 and Acid 810 mixture was more effective than that of DCH18C6 and $D_2EHPA$ mixture in the extraction separation of magnesium.

  • PDF

Phase Separation Characteristics via Bunsen Reaction in Sulfur-Iodine Thermochemical Hydrogen Production Process (SI 열화학 수소 제조 공정에서 분젠 반응을 통한 상 분리 특성)

  • Lee, Kwang-Jin;Kim, Young-Ho;Park, Chu-Sik;Bae, Ki-Kwang
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.5
    • /
    • pp.386-393
    • /
    • 2008
  • The Sulfur-iodine(SI) thermochemical cycle is one of the most promising methods for massive hydrogen production. For the purpose of continuous operation of SI cycle, phase separation characteristics into two liquid phases ($H_2SO_4$-rich phase and $HI_x$-rich phase) were directly investigated via Bunsen reaction. The experiments for Bunsen reaction were carried out in the temperature range, from 298 to 333 K, and in the $I_2/H_2O$ molar ratio of $0.109{\sim}0.297$ under a continuous flow of $SO_2$ gas. As the results, solubility of $SO_2$, decreased with increasing the temperature, had considerable influence on the global composition in the Bunsen reaction system. The amounts of impurity in each phase(HI and $I_2$ in $H_2SO_4$-rich phase and $H_2SO_4$ in $HI_x$-rich phase) were decreased with increasing $H_2SO_4$ molar ratio and temperature. To control the amounts of impurity in $HI_x$-rich phase, temperature is a factor more important than $I_2/H2_O$ molar ratio. On the other hand, the affinity between $HI_x$ and $H_2O$ was increased with increasing $I_2/H2_O$molar ratio.